Từ điểm A nằm ngoài đường tròn (O;R) kẻ hai tiếp tuyển AB , AC với đường tròn đó (tại các tiếp điểm B và C) a) chứng minh tứ giác ABOC nội tiếp đường tròn B) vẽ đường kính BD của (O) .chứng minh OA//CD C) đường thẳng đi qua điểm I vuông góc với AD cắt đường thẳng BC tại điểm E . Chứng minh ED là tiếp tuyến của (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
=>OBAC là tứ giác nội tiếp
M làtrung điểm của OA
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của CB
=>OA vuông góc BC
c: ΔOEF cân tạiO
mà OK là trung tuyến
nên OK vuông góc EF
=>góc OKA=góc OBA=góc OCA=90 độ
=>O,K,A,B,C cùng thuộc 1 đường tròn

ta có: góc ABO và góc ACO cùng nhìn xuống cạnh AO dưới 1 góc vuông nên tứ giác ABOC nội tiếp đường tròn đường kính AO

a)Vì AB,AC là tt
`=>hat{ABO}=hat{ACO}=90^o`
Xét tg ABOC có:
`hat{ABO}+hat{ACO}=180^o`
Mà đây là 2 góc đối nhau
`=>` tg ABOC nt
Vì AB,AC là 2 tt cắt tại A
`=>AB=AC`
Mà `OB=OC=R`
`=>` AO là trung trực BC
`=>OA bot BC`
`b)` Không có điểm H sao chứng minh?

a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔOCB co OB=OC=BC
nen ΔOBC đều
=>góc OBC=60 độ
=>góc ABC=30 độ

a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
2: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AE*AF
a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(4)
Từ (3),(4) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà OA\(\perp\)BC
nên OA//CD
c: Sửa đề: Đường thẳng qua O vuông góc với AD cắt BC tại E
Gọi H là giao điểm của BC và OA
Vì OA là đường trung trực của BC
nên OA\(\perp\)BC tại H và H là trung điểm của BC
Gọi I là giao điểm của OE và DA
Theo đề, ta có: OE\(\perp\)DA tại I
Xét ΔOIA vuông tại I và ΔOHE vuông tại H có
\(\widehat{IOA}\) chung
Do đó: ΔOIA~ΔOHE
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OE}\)
=>\(OI\cdot OE=OH\cdot OA\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(2\right)\)
Từ (1),(2) suy ra \(OI\cdot OE=R^2=OD^2\)
=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
Xét ΔOID và ΔODE có
\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
\(\widehat{IOD}\) chung
Do đó: ΔOID~ΔODE
=>\(\widehat{OID}=\widehat{ODE}\)
=>\(\widehat{ODE}=90^0\)
=>DE là tiếp tuyến của (O)