tìm a , b, c
0,a +a,b + ab,c = bc,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
Cộng vế với vế ta có:
a^2+b^2+c^2+2(ab+bc+ca)=20+180+200 a^2+b^2+c^2+2(ab+bc+ca)=20+180+200
→(a+b+c)2=400→(a+b+c)2=400
→a+b+c=20→a+b+c=20 vì a,b,c∈N∗→a+b+c≥0a,b,c∈N∗→a+b+c≥0
Ta có:
a^2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1a2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1
ab+b^2+bc=180→b(a+b+c)=180→b⋅20=180→b=9ab+b2+bc=180→b(a+b+c)=180→b⋅20=180→b=9
ac+bc+c2=200→c(a+b+c)=200→c⋅20=200→c=10
ết bài toán này cho em:
Đầu tiên, thầy cần giải thích ký hiệu trong bài:
Phương trình: 0,a + a,b + ab,c = bc,b
Thầy sẽ viết lại dưới dạng phân số để dễ tính: a/10 + (10a + b)/10 + (10a + b + c/10)/1 = (10b + c + b/10)/1
Để giải được, thầy cần thử các giá trị cụ thể: Giả sử a = 1, b = 2, c = 3:
Thầy thử a = 2, b = 4, c = 6:
Em cần kiểm tra lại đề bài xem có chính xác không, vì bài toán này có thể có nhiều cách hiểu khác nhau về ký hiệu số thập phân.