K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4

câu hỏi đâu bn?

9 tháng 4

Nếu câu hỏi là Chứng tỏ B không phải là số nguyên thì:

B  \(= \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + \frac{4^{2} - 1}{4^{2}} + . . . + \frac{5 0^{2} - 1}{5 0^{2}}\)

    \(= 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)

mà    \(0 < \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) < 1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên ^_^


26 tháng 5 2016

Đề bài yêu cầu làm j z bn

17 tháng 6 2015

B  \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)

    \(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

mà    \(0<\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)<1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên ^_^

B  \(= \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + \frac{4^{2} - 1}{4^{2}} + . . . + \frac{5 0^{2} - 1}{5 0^{2}}\)

    \(= 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)

mà    \(0 < \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) < 1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên

4 tháng 4 2017

Do S = \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}\)

\(\Rightarrow\)S = \(\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(\Rightarrow\)S=(1+1+1+...+1) - \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow\)S=49-\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Dễ thấy:\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)không phải là số tự nhiên

\(\Rightarrow\)S\(\notin N\)

8 tháng 3 2018

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

4 tháng 2 2019

đúng ko zậy 

9 tháng 4 2020

So thú bi cháy con gì ra đau tiên:

1 tháng 5 2016

17/25 nha bạn