K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3xy+4x-2y=15

=>\(x\left(3y+4\right)-2y-\dfrac{8}{3}=15-\dfrac{8}{3}\)

=>\(3x\left(y+\dfrac{4}{3}\right)-2\left(y+\dfrac{4}{3}\right)=\dfrac{37}{3}\)

=>\(\left(3x-2\right)\left(y+\dfrac{4}{3}\right)=\dfrac{37}{3}\)

=>(3x-2)(3y+4)=37

=>(3x-2;3y+4)\(\in\){(1;37);(37;1);(-1;-37);(-37;-1)}

=>(3x;3y)\(\in\){(3;33);(39;-3);(1;-41);(-35;-5)}

=>(x;y)\(\in\left\{\left(1;11\right);\left(13;-1\right);\left(\dfrac{1}{3};-\dfrac{41}{3}\right);\left(-\dfrac{35}{3};-\dfrac{5}{3}\right)\right\}\)

mà x,y nguyên

nên (x;y)\(\in\){(1;11);(13;-1)}

3xy+4x-2y=15

=>\(x \left(\right. 3 y + 4 \left.\right) - 2 y - \frac{8}{3} = 15 - \frac{8}{3}\)

=>\(3 x \left(\right. y + \frac{4}{3} \left.\right) - 2 \left(\right. y + \frac{4}{3} \left.\right) = \frac{37}{3}\)

=>\(\left(\right. 3 x - 2 \left.\right) \left(\right. y + \frac{4}{3} \left.\right) = \frac{37}{3}\)

=>(3x-2)(3y+4)=37

=>(3x-2;3y+4)\(\in\){(1;37);(37;1);(-1;-37);(-37;-1)}

=>(3x;3y)\(\in\){(3;33);(39;-3);(1;-41);(-35;-5)}

=>(x;y)\(\in \left{\right. \left(\right. 1 ; 11 \left.\right) ; \left(\right. 13 ; - 1 \left.\right) ; \left(\right. \frac{1}{3} ; - \frac{41}{3} \left.\right) ; \left(\right. - \frac{35}{3} ; - \frac{5}{3} \left.\right) \left.\right}\)

mà x,y nguyên

nên (x;y)\(\in\){(1;11);(13;-1)} mình thấy dễ mà 😊

Bài 1: Tìm x, y nguyên biết :

a) 4x + 2xy + y = 7

   => 2.x(y-2)+(y-2)=5

    => ( y-2)(2x+1)= 5

    Ta có bảng sau:

     

2x+1-5-115
y-2-1-551
x-3-102
y1-373

 

Điều kiện: t/m

Vậy:....

phần b và c tương tự

5 tháng 5 2023

thank

3xy+2y=2-x

=>3xy+2y+x=2

=>\(y\left(3x+2\right)+x+\dfrac{2}{3}=2+\dfrac{2}{3}=\dfrac{8}{3}\)

=>\(3y\left(x+\dfrac{2}{3}\right)+\left(x+\dfrac{2}{3}\right)=\dfrac{8}{3}\)

=>\(\left(x+\dfrac{2}{3}\right)\left(3y+1\right)=\dfrac{8}{3}\)

=>\(\left(3x+2\right)\left(3y+1\right)=8\)

=>\(\left(3x+2;3y+1\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(-\dfrac{1}{3};\dfrac{7}{3}\right);\left(2;0\right);\left(-1;-3\right);\left(-\dfrac{10}{3};-\dfrac{2}{3}\right);\left(0;1\right);\left(\dfrac{2}{3};\dfrac{1}{3}\right);\left(-\dfrac{4}{3};-\dfrac{5}{3}\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;0\right);\left(-1;-3\right);\left(0;1\right);\left(-2;-1\right)\right\}\)

5 tháng 8 2017

Câu bc mình ghi nhầm nên dừng làm

5 tháng 8 2017

kết bạn với mình đi

AH
Akai Haruma
Giáo viên
15 tháng 10 2023

Lời giải:
$3xy-2x-2y=24$

$\Rightarrow (3xy-2x)-2y=24$

$\Rightarrow x(3y-2)-2y=24$

$\Rightarrow 3x(3y-2)-6y=72$

$\Rightarrow 3x(3y-2)-2(3y-2)=76$

$\Rightarrow (3x-2)(3y-2)=76$

Vì $x,y$ nguyên nên $3x-2, 3y-2$ cũng là số nguyên. Do đo $3x-2, 3y-2$ là ước của 76. 

Đến đây thì đơn giản rồi. Bạn chỉ cần xét các TH khác nhau của ước của 76.

26 tháng 10 2023

cảm ơn bạn nha

 

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

21 tháng 8 2016

x2 + 2y+ 3xy +3x + 5y = 15 (1)

Để đưa (1) về dạng tích, ta nhóm Pt theo biến x và xem y là tham số:

x2+3xy(y+1)+2y2+5y+m

=15+m (2)

Ta cần chọn m sao cho VT có \(\Delta\) là SCP

Ta có: 

\(\Delta=9\left(y+1\right)^2-4\left(2y^2+5y+m\right)=y^2-2y+9-4m\)

Chọn m=2 ta có: \(\Delta=\left(y-1\right)^2\)

Suy ra x1=-y-2; x2=-2y-1

Khi đó (2) trở thành

(x+y+2)(x+2y+1)=17.Giải các hệ

\(\begin{cases}x+y+2=17\\x+2y+1=1\end{cases}\);\(\begin{cases}x+y+2=1\\x+2y+1=17\end{cases}\);\(\begin{cases}x+y+2=-1\\x+2y+1=-17\end{cases}\);

\(\begin{cases}x+y+2=-17\\x+2y+1=-1\end{cases}\)

Ta tìm đc các nghiệm (x;y)=(12;-15),(-36;17),(-18;17),(30;-15)

 

 

22 tháng 8 2017

SCP là j

5 tháng 2 2018

Ta có: \(x^2+2y^2+3xy+3x+5y=15\)

\(\Leftrightarrow x^2+2y^2+3xy+3x+5y+2=17\)

\(\Leftrightarrow\left(x^2+xy+2x\right)+\left(2xy+2y^2+4y\right)+\left(x+y+2\right)=17\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17=1.17=17.1=\left(-1\right)\left(-17\right)=\left(-17\right)\left(-1\right)\)

Thế vô rồi tìm ra nha bạn!