K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

1.

\(\lim\limits_{x\to +\infty}(x^3+3x^2+2)=+\infty\)

2. 

\(\lim\limits_{x\to -\infty}\sqrt{4x^2-x+5}=\lim\limits_{x\to -\infty}-x.\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=+\infty\) do $-x\to +\infty$ và $\lim\limits_{x\to -\infty}\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=4>0$

 

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

3.

\(\lim\limits_{x\to +\infty}(\sqrt{x^2-2x-1}-\sqrt{x^2-7x+3})=\lim\limits_{x\to +\infty}\frac{x^2-2x-1-(x^2-7x+3)}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}\)

\(=\lim\limits_{x\to +\infty}\frac{5x-4}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}=\lim\limits_{x\to +\infty}\frac{5-\frac{4}{x}}{\sqrt{1-\frac{2}{x}-\frac{1}{x^2}}+\sqrt{1-\frac{7}{x}+\frac{3}{x^2}}}\)

\(=\frac{5}{1+1}=\frac{5}{2}\)

 

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)

NV
27 tháng 4 2021

Để được trợ giúp 1 cách chính xác, bạn cần gõ đề 1 cách đầy đủ (bao gồm dấu ngoặc)

Nhìn đề của bạn thì chắc chắn là thiếu vài dấu ngoặc rồi

31 tháng 7 2021

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 3 2021

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

7 tháng 3 2021

Quoc Tran Anh Le CTV Chưa ra bài tiếp à!?

23 tháng 7 2017

a) Ta có công thức: Với  \(x\in N\)  thì  \(\sqrt{1^3+2^3+3^3+...+x^3}=1+2+3+...+x=\frac{x\left(x+1\right)}{2}\)

Do đó pt trên tương đương với  \(\frac{x\left(x+1\right)}{2}=4950\)

Tìm được x = 99

24 tháng 7 2017

Chẳng thèm nói nhiều :v Nhìn đề bải thì làm phát đặt biến ngay ^_^
Lời giải: \(Dat:\hept{\begin{cases}\sqrt[8]{1+x}=a>0\\\sqrt[8]{1-x}=b>0\end{cases}}\)
\(\hept{\begin{cases}a+b+ab=3\\a^8+b^8=2\end{cases}=>\hept{\begin{cases}3\ge ab+2\sqrt{ab}\\2\ge2a^4b^4=>1\ge ab\end{cases}}}=>\hept{\begin{cases}ab\ge1\\1\ge ab\end{cases}=>ab=1.}\)
\(\hept{\begin{cases}a+b=2\left(Vi:ab=1\right)\\a^8+b^8=2\end{cases}}\left(\cdot\right)=>a=b=1\)
Ta có a=b=1 Vì: \(a^8+b^8\ge\frac{\left(a^4+b^4\right)^2}{2}\ge\frac{1}{2}\left(\frac{\left(a^2+b^2\right)^2}{2}\right)^2\ge\frac{\left(a+b\right)^8}{8.2^4}=2=>Dáu=xayra< =>a=b=1\)
K mình nhé ^^ 

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

20 tháng 8 2021

\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{9x-1}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\dfrac{3x+3\sqrt{x}-1}{9x-1}.\dfrac{3\sqrt{x}+1}{3}=\dfrac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)

10 tháng 9 2018

\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\dfrac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)