Hãy viết một đoạn chương trình có độ phức tạp thời gian là tuyến tính.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


*Chương trình 1:
from collections import Counter
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.time()
for k in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.time()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# Sử dụng hàm Counter để đếm số lần lặp
counter = Counter(range(n))
# In số lần lặp
print("Số lần lặp: {}".format(counter))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
*Chương trình 2:
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.perf_counter()
for k in range(n):
for j in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.perf_counter()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# In số lần lặp
print("Số lần lặp: {}".format(c))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:
Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).

Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.
Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.
Các phép toán trong vòng lặp:
Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).
Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).
Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

1. Tính số lần lặp của vòng lặp bên trong của thuật toán sắp xếp chèn tuyến tính.
2. Tính số lần lặp của vòng lặp ngoài của thuật toán sắp xếp chèn tuyến tính.
3. Ước lượng độ phức tạp thời gian của thuật toán sắp xếp chèn tuyến tính:
Vòng lặp for bên ngoài kiểm soát việc thực hiện đúng n-1 bước.
Vòng lặp while lồng bên trong thực hiện đồng thời cùng lúc hai việc a) và b) theo cách dịch chuyển dần từng bước sang trái, từ vị trí i tới vị trí k+1

THAM KHẢO!
Chương trình trên tính tổng các giá trị i*(i+1) trong khoảng từ 0 đến n-1 và lưu kết quả vào biến s. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng for và các phép toán trong vòng lặp.
Vòng for: Vòng lặp này chạy từ 0 đến n-1, với n là 1.000. Vậy số lần lặp là n, hay 1.000 lần.
Các phép toán trong vòng lặp:
Phép gán s = s + i*(i+1): Đây là phép gán giá trị vào biến s, có độ phức tạp là O(1).
Phép toán i*(i+1): Đây là phép nhân và cộng, có độ phức tạp là O(1).
Vậy tổng độ phức tạp thời gian của chương trình là O(n), hay O(1.000)

tính E(300)=300/log2(300), E(90000)=90000/log2(90000)
Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện
nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).
Từ đó tính được x=3

Tham khảo:
Viết chương trình Python thực hiện thuật toán sắp xếp chèn tuyến tính dựa trên mã giả đã cho trong báo học:
void Insertion_Sort(int a[], int n){
int pos, i;
int x;//lưu giá trị a[i] tránh bị ghi đè khi dời chỗ các phần tử
for(i=1; i<n; i++){//đoạn a[0] đã sắp xếp
x = a[i]; pos = i-1;
//tìm vị trí chèn x
while((pos>=0)&&(a[pos]>x)){
//kết hợp dời chỗ các phần tử sẽ đứng sau x trong danh sách mới
a[pos+1] = a[pos];
pos--;
}
a[pos+1] = x;//chèn x vào danh sách
}
}
void main()
{
int a[5] = {8, 4, 1, 6, 5};
Insertion_Sort(a, 5);
cout<<"Mang sau khi sap xep:"<<endl;
for(int i=0;i<5;i++){
cout<<a[i]<<" ";
}
system("pause");

a) T(n) = 2n(n - 2) + 4 = 2n2 - 4n + 4 = O(n2)
b) T(n) = n3 + 5n – 3 = O(n3)