Phân số 30/121 tối giản chưa
A Rồi B Chưa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các phân số tối giản là: \(\dfrac{1}{5};\dfrac{7}{6};\dfrac{9}{19}\)
b) Ba phân số tối giản là: \(\dfrac{3}{2};\dfrac{5}{6};\dfrac{4}{9}\)
Ba phân số chưa tối giản là:
\(\dfrac{10}{18}=\dfrac{10:2}{18:2}=\dfrac{5}{9}\)
\(\dfrac{20}{50}=\dfrac{20:10}{50:10}=\dfrac{2}{5}\)
\(\dfrac{3}{12}=\dfrac{3:3}{12:3}=\dfrac{1}{4}\)
Lời giải:
Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.
Gọi số đó là $d$.
Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$
$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.
\(\frac{34}{51}=\frac{34:17}{51:17}=\frac{2}{3}\)
=.= hok tốt!!
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
Phân số đã cho chưa tối giản vì ƯCLN(16,10) = 2
\(\frac{{16}}{{10}} = \frac{{16:2}}{{10:2}} = \frac{8}{5}\).
30/121 là 1 phân số tối giản
Giải:
Vì 30 và 121 không thể cùng chia hết cho bất cứ số nào khác 0 ngoài 1 vậy số phân số đã cho là phân số tối giản.
Chọn A rồi