K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3

Olm chào em, em cần chứng minh gì với biểu thức này thì ghi rõ ra em nhé. Có như vậy em mới nhận được sự trợ giúp tốt nhất từ cộng đồng Olm, em nhé.

31 tháng 3

CMR:\(5^{n}+2+26,5^{n}+8^{2n}+1\)

11 tháng 8 2018

với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán

giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)

khi đó nếu \(n=k+1\) thì ta có :

\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)

\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)

\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)

\(\Rightarrow\left(đpcm\right)\)

3 tháng 12 2017

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)

\(A=5^n.51+64^n.8\)

\(A=5^n.59-5^n.8+64^n.8\)

\(A=5^n.59+8.\left(-5^n+64^n\right)\)

Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)

\(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)

Từ (1)(2)⇒ A\(⋮\)59

12 tháng 2 2018

\(A=5^{n+2}+26.5^n+8^{2n+1}\left(n\in N\right)\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8\left(64-5\right)\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59.5^n+8.59\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59\left[5^n+8\left(64^{n-1}+64^{n-2}.5+...\right)\right]⋮59\)

Vậy \(A⋮59\)\(\forall n\in N\)(đpcm)

9 tháng 3 2019

a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n

Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )

Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)

b, Ta có : \(168=2^3.3.7\)

- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )

\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\)     (1)

- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 ) 

Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\)   (2)

- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )

nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)

Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)

hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)

13 tháng 4 2020

n lớn hơn 1 nhé

6 tháng 8 2016

a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc

Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)

\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)

\(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133

Mà 11n.133 cũng chia hết cho 133

=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)

b,\(5^{n+2}+26.5^n+8^{2n+1}\)

\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)

\(=59.5^n+8.\left(64^n-5^n\right)\)

\(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59

Mà 59.5n cũng chia hết cho 59

=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)

8 tháng 10 2019

a,sai nha bn

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Lời giải:

$A=5^{n+2}+26.5^n+8^{2n+1}=5^n(5^2+26)+8^{2n+1}$

$=51.5^n+64^n.8$

$\equiv 51.5^n+5^n.8\equiv 5^n(51+8)\equiv 5^n.59\equiv 0\pmod {59}$

Ta có đpcm

21 tháng 12 2021

Cô ơi e chưa học cái (≡) này ạ