Cho \(F=\left(a+b+c\right)^2\) và \(G=a^2+b^2+c^2+2ab+2bc+2ac\)
Chứng minh \(F=G\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần CM tương đương:
\(3-VT\ge1\)
\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)
\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)
\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)
Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)
... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng
=> BĐT trên đúng
=> đpcm
Dấu "=" xảy ra khi: a = b = c
Tham khảo:
Cho a≠b≠c, a+b≠c và c2+2ab-2ac-2bc=0 Hãy rút gọn \(B=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\) - Hoc24
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}\)
\(=\dfrac{2a^2-2ac+c^2}{2b^2-2bc+c^2}\)
Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)
Theo giả thiết : \(A+B+C=1\)
Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)
\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)
\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)
\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)
\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)
\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)
Có 3 khả năng xảy ra :
TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)
TH2 :
\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)
TH3:
\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)
và \(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)
tìm trên câu hỏi tương tự bạn sẽ có lời giải của Nguyễn Việt Lâm
\(F\left(x\right)=\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\cdot c\cdot\left(a+b\right)+c^2\)
\(=a^2+b^2+2ab+2ac+2bc+c^2\)
=G(y)
F(x)=(a+b+c)2
\(= \left(\left(\right. a + b \left.\right)\right)^{2} + 2 \cdot c \cdot \left(\right. a + b \left.\right) + c^{2}\)
\(= a^{2} + b^{2} + 2 a b + 2 a c + 2 b c + c^{2}\)
=G(y)