K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5

7. Toán: Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất của ab^2 + bc^2 + ca^2

Gợi ý giải:
Áp dụng bất đẳng thức Cauchy-Schwarz hoặc thử giá trị đặc biệt (ví dụ a = b = c hoặc cho một biến tiến về 0) để tìm giá trị lớn nhất.


Ta có \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Leftrightarrow\left(a^2-2a+1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^4-a^3+1\ge a\)

\(\Leftrightarrow a^4-a^3+ab+2\ge a+ab+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự \(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)

             \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(=\sqrt{3\left(\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=1

19 tháng 3 2020

Đoán xem

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(P=(a+b+c)^2-(ab+bc+ac)=36-(ab+bc+ac)\) $(1)$

\(0\leq a,b,c\leq 4\Rightarrow (a-4)(b-4)(c-4)\leq 0\)

\(\Leftrightarrow abc-4(ab+bc+ac)+16(a+b+c)-64\leq 0\)

\(\Leftrightarrow 4(ab+bc+ac)\geq 32+abc\geq 32\) (do \(abc\geq 0\) )

\(\Rightarrow ab+bc+ac\geq 8\) $(2)$

Từ \((1),(2)\Rightarrow P\leq 28\) hay \(P_{\max}=28\)

Dấu bằng xảy ra khi \((a,b,c)=(0,2,4)\) và các hoán vị của nó

1 tháng 11 2017

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}\Leftrightarrow bc=ab\Rightarrow a=c\)(1)

Tương tựi ta cũng có : \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)(2)

Từ (1);(2) \(\Rightarrow a=b=c\)Thay vào M ta được :\(M=\frac{a.a+a.a+a.a}{a^2+b^2+c^2}=1\)

30 tháng 10 2017

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=b=c=a\)

\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)

NV
24 tháng 6 2021

\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

BĐT tương đương:

\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)

Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(2abc+3\right)^2\ge25abc\)

\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))

Dấu "=" xảy ra khi \(a=b=c=1\)