Hình bình hành ABCD có AC là đường chéo lớn.Từ C hạ CE vuông góc với AB (E thuộc AB) và CF vuông góc với AD (F thuộc đường thẳng AD)
Chứng minh tam giác CEF đồng dạng với tam giác DAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:
\(CE\cdot CA=CH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:
\(CF\cdot CB=CH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)
hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Xét ΔCEF vuông tại C và ΔCBA vuông tại A có
\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Do đó: ΔCEF\(\sim\)ΔCBA
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AE*AC: AB/AE=AC/AF
b: Xet ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
góc BFC=góc BDA=90 độ
mà góc B chung
nên ΔBFC đồng dạng với ΔBDA
=>BF/BD=BC/BA
=>BF/BC=BD/BA
=>ΔBFD đồng dạng với ΔBCA
Xét ΔCEB vuông tại E và ΔCFD vuông tại F có
\(\widehat{B}=\widehat{D}\)
Do đó: ΔCEB~ΔCFD
=>\(\dfrac{CE}{CF}=\dfrac{CB}{CD}=\dfrac{AD}{CD}\)
=>\(\dfrac{CE}{DA}=\dfrac{CF}{CD}\)
=>\(\dfrac{AD}{CE}=\dfrac{DC}{CF}\)
Xét tứ giác AECF có \(\widehat{AEC}+\widehat{AFC}+\widehat{FAE}+\widehat{FCE}=360^0\)
=>\(\widehat{BAD}+\widehat{FCE}=360^0-90^0-90^0=180^0\)
mà \(\widehat{BAD}+\widehat{ADC}=180^0\)(ABCD là hình bình hành)
nên \(\widehat{ADC}=\widehat{FCE}\)
Xét ΔADC và ΔECF có
\(\dfrac{AD}{EC}=\dfrac{DC}{CF}\)
\(\widehat{ADC}=\widehat{ECF}\)
Do đó: ΔADC~ΔECF