K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔCEB vuông tại E và ΔCFD vuông tại F có

\(\widehat{B}=\widehat{D}\)

Do đó: ΔCEB~ΔCFD

=>\(\dfrac{CE}{CF}=\dfrac{CB}{CD}=\dfrac{AD}{CD}\)

=>\(\dfrac{CE}{DA}=\dfrac{CF}{CD}\)

=>\(\dfrac{AD}{CE}=\dfrac{DC}{CF}\)

Xét tứ giác AECF có \(\widehat{AEC}+\widehat{AFC}+\widehat{FAE}+\widehat{FCE}=360^0\)

=>\(\widehat{BAD}+\widehat{FCE}=360^0-90^0-90^0=180^0\)

mà \(\widehat{BAD}+\widehat{ADC}=180^0\)(ABCD là hình bình hành)

nên \(\widehat{ADC}=\widehat{FCE}\)

Xét ΔADC và ΔECF có

\(\dfrac{AD}{EC}=\dfrac{DC}{CF}\)

\(\widehat{ADC}=\widehat{ECF}\)

Do đó: ΔADC~ΔECF

30 tháng 4 2019

a, xét tam giác EBC và tam giác DAC có : 

góc C chung

góc ADC = góc BEC = 90

=> tam giác EBC ~ tam giác DAC (g - g)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:

\(CE\cdot CA=CH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:

\(CF\cdot CB=CH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)

hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Xét ΔCEF vuông tại C và ΔCBA vuông tại A có 

\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)

Do đó: ΔCEF\(\sim\)ΔCBA

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB*AF=AE*AC: AB/AE=AC/AF

b: Xet ΔABC và ΔAEF có

AB/AE=AC/AF
góc BAC chung

=>ΔABC đồng dạng với ΔAEF

góc BFC=góc BDA=90 độ

mà góc B chung

nên ΔBFC đồng dạng với ΔBDA

=>BF/BD=BC/BA

=>BF/BC=BD/BA

=>ΔBFD đồng dạng với ΔBCA

 

28 tháng 3 2023

Giúp mình với ạ