K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là một hàm số đa thức bậc ba. Bạn có thể muốn thực hiện một số thao tác với hàm số này, chẳng hạn như:

  • Tính giá trị của hàm số tại một điểm:
    • Ví dụ: tính f(1), f(0), f(-1),...
  • Tìm đạo hàm của hàm số:
    • f'(x) = x^2 + 4x + 3
  • Tìm các điểm cực trị của hàm số:
    • Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0.
    • x^2 + 4x + 3 = 0
    • (x + 1)(x + 3) = 0
    • Vậy, x = -1 hoặc x = -3.
  • Vẽ đồ thị của hàm số:
    • Để vẽ đồ thị, bạn có thể tính giá trị của hàm số tại một số điểm và vẽ các điểm đó trên mặt phẳng tọa độ.
  • Tìm các khoảng đồng biến và nghịch biến của hàm số:
    • Dựa vào đạo hàm và các điểm cực trị.
22 tháng 3

Được thôi! Vậy với hàm số \(f\left(x\right)=\frac13x^3+2x^2+3x-1\) , bạn muốn mình giúp gì? Mình có thể tính đạo hàm, tích phân, giá trị tại một điểm cụ thể, hoặc phân tích tính chất của hàm số này.

9 tháng 9 2021

\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)

\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)

9 tháng 9 2021

\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)

f(x)=x^3-2x^2+3x+1

g(x)=x^3+x^2-5x+3

a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27

g(-2)=-8+4+10+3=17-8=9

b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3

=x^2+8x-2

f(x)+g(x)

=x^3-2x^2+3x+1+x^3+x^2-5x+3

=2x^3-x^2-2x+4

8 tháng 1 2023

`e)(x+2)(x+3)=5-x+x(x-1)-2`

`<=>x^2+3x+2x+6=5-x+x^2-x-2`

`<=>7x=-3`

`<=>x=-3/7`

`f)(2x-3)(3-x)+(x-1)^2=1-(x+3)(x-3)`

`<=>6x-2x^2-9+3x+x^2-2x+1=1-x^2+9`

`<=>7x=17`

`<=>x=17/7`

`j)3(x+1)(x-1)=3(x^2+2x)+1`

`<=>3x^2-3=3x^2+6x+1`

`<=>6x=-4`

`<=>x=-2/3`

`1,`

`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`

`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`

`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`

`= 9x^4-2x^3+8x^2+2x+6`

Đề phải là `f(x)-g(x)` chứ nhỉ :v?

`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`

`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`

`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`

`= x^4+2x^3-6x+x^2+8`

21 tháng 10 2023

2: ĐKXĐ: x<>1

\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

f'(x)=0

=>x^2-2x=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

1:

\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)

=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)

f'(x)=0

=>\(\left(x-2\sqrt{2}\right)^2=0\)

=>\(x-2\sqrt{2}=0\)

=>\(x=2\sqrt{2}\)