K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3

x=7k+2

P nguyên

=>\(x-2⋮7\)

=>\(x-2=7k\left(k\in Z\right)\)

=>\(x=7k+2\left(k\in Z\right)\)

Để \(\frac{x^2+7}{x+1}\)nhận giá trị nguyên thì \(x^2+7⋮x+1\left(1\right)\)

+)Ta có:\(x+1⋮x+1\)

\(\Rightarrow x.\left(x+1\right)⋮x+1\)

\(\Rightarrow x^2+x⋮x+1\left(2\right)\)

+)Từ (1) và (2)

\(\Rightarrow\left(x^2+x\right)-\left(x^2+7\right)⋮x+1\)

\(\Rightarrow x^2+x-x^2-7⋮x+1\)

\(\Rightarrow x-7⋮x+1\left(3\right)\)

+)Ta lại có:\(x+1⋮x+1\left(4\right)\)

+)Từ (3) và (4)

\(\Rightarrow\left(x+1\right)-\left(x-7\right)⋮x+1\)

\(\Rightarrow x+1-x+7⋮x+1\)

\(\Rightarrow8⋮x+1\)

\(\Rightarrow x+1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\in Z\)

Vậy \(x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)

Chúc bn học tốt

21 tháng 10 2020

Có p; q ; p -q ; p + q là các số nguyên tố

=> p > q

Th1: q > 2 

=> p; q là số chẵn 

=> p - q ; p + q là các số chẵn => loại 

Th2: q = 2 

Ta tìm p để p; p - 2 ; p + 2 là các số nguyên tố

+) Nếu p - 2 = 3 => p = 5 => p + 2 = 7 là các số nguyên tố => p = 5 thỏa mãn

+) Nếu p - 2 = 3k + 1 => p = 3 k + 3 không là số nguyên tố=> loại 

+) Nếu p - 2 = 3k + 2 => p = 3k + 4 => p + 2 = 3k + 6 không là số nguyên tố => loại 

Vậy p = 5; q = 2

\(x+2⋮x-7\)

=>\(x-7+9⋮x-7\)

=>\(9⋮x-7\)

=>\(x-7\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(x\in\left\{8;6;10;4;16;-2\right\}\)

8 tháng 12 2023

Ta có:

x + 2 = x - 7 + 9 

Để (x + 2) ⋮ (x - 7) thì 9 ⋮ (x - 7)

⇒ x - 7 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}

⇒ x ∈ {-2; 4; 6; 8; 10; 16}

15 tháng 7 2017

\(2x^2+x-7=2x^2-8+x-2+3=2\left(x^2-4\right)+\left(x-2\right)+3\)

\(=2\left(x-2\right)\left(x+2\right)+\left(x-2\right)+3=\left(x-2\right)\left(2x+5\right)+3\)chia hết cho x-2

mà (x-2)(2x+5) chia hết cho x-2 => 3 chia hết cho x-2

=> \(x-2\inƯ\left(3\right)=\left\{-3;-1;3\right\}\Leftrightarrow x\in\left\{-1;1;5\right\}\)

9 tháng 2 2019

thieu 1

nhìn vô biết ngay là vô nghiệm mà

3 tháng 5 2021

a)n=5

b)X=16;-10;2;4

c)x=113;39;5;3;1;-1;-35;-109

23 tháng 11 2021

Answer:

a) \(\left(n+2\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)

\(\Rightarrow5⋮\left(n-3\right)\)

\(\Rightarrow n-3\) là ước của \(5\), ta có:

Trường hợp 1: \(n-3=-1\Rightarrow n=2\)

Trường hợp 2: \(n-3=1\Rightarrow n=4\)

Trường hợp 3: \(n-3=5\Rightarrow n=8\)

Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)

b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)

Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)

c) Ta có: \(x-2\inƯ\left(111\right)\)

\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)

\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)

d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)

Trường hợp 2: \(n+15=1\Rightarrow n=-14\)

Trường hợp 3: \(n+15=5\Rightarrow n=-10\)

Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)

Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)

e) \(3⋮n+24\)

\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)

f) Ta có:  \(x-2⋮x-2\)

\(\Rightarrow4\left(x-2\right)⋮x-2\)

\(\Rightarrow4x-8⋮x-2\)

\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)

7 tháng 4 2016

4x-37 chia hết cho x-6

4x-24-13

=>13 chia hết cho x-6

x=7,19,5,-7