K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3

A = \(\frac{2021}{2022}\) + \(\frac{2022}{2023}\) và B = \(\frac{2021+2022}{2022+2023}\)

Vì: \(\frac{2021}{2022}>\frac{2021}{2022+2023}\)

\(\frac{2022}{2023}\) > \(\frac{2022}{2022+2023}\)

Nên: cộng vế với vế ta có:

A = \(\frac{2021}{2022}+\frac{2022}{2023}\) > \(\frac{2021+2022}{2022+2023}\) = B

Vậy A > B

a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)

\(\dfrac{154}{155}>\dfrac{154}{155+156}\)

\(\dfrac{155}{156}>\dfrac{155}{155+156}\)

=>154/155+155/156>(154+155)/(155+156)

=>A>B

b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)

2021/2022>2021/6069

2022/2023>2022/2069

2023/2024>2023/6069

=>D>C

29 tháng 10 2023

Ta có:

\(2023^{2022}=2023\cdot2023^{2021}\)

\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)

Mà: \(2023>2022\)

\(\Rightarrow2023^{2021}>2022^{2021}\)

\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)

\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\) 

Vậy: ... 

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)

\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)

10^2023+50>10^2022+50

=>-45/10^2023+50<-45/10^2020+50

=>1/10A<1/10B

=>A<B

16 tháng 2 2023

A phải lớn hơn B vì phần bù của số nào nhỏ hơn thì số đó lớn hơn bạn nhé. Nhưng dù sao cx động viên bạn, mình tick cho. Cảm ơn bạn nhiều

2 tháng 5 2022

sửa rồi đó ạ

 

a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)

\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)

98^88+1>98^99+1

=>A<B

b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)

\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)

2022^2023>2022^2021

=>2022^2023+2022^2>2022^2021+2022^2

=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)

=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)

=>C>D

11 tháng 9 2023

\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)

\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)

Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)

Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.

\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )

                   \(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )

Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)

\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)

\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)

Do : \(\dfrac{36}{42}>\dfrac{35}{42}\)  nên \(\dfrac{6}{7}>\dfrac{5}{6}\)

11 tháng 9 2023

không câu SP nhé

6 tháng 11 2021

\(-\dfrac{2021}{2022}< \dfrac{2022}{2023}\)

6 tháng 11 2021

\(\dfrac{-2021}{2022}< 0;\dfrac{2022}{2023}>0\Rightarrow\dfrac{-2021}{2022}< \dfrac{2022}{2023}\)

\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà 10^2023+1>10^2022+1

nên A<B