K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3

Giải:

y = (m -2)\(x\) + 2

⇒ (m- 2)\(x\) - y + 2 = 0

Gốc tọa độ O(0; 0)

Khoảng cách từ gốc tọa độ O(0; 0) đến đường thẳng (d) là:

d(O;d) = \(\frac{\left|\left(m-2\right)\right..0-1.0+2\left|\right.}{\sqrt{\left(m-2\right)^2+1}}\) = \(\frac{2}{\sqrt{\left(m-2\right)^2+1}}\)

Khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất khi A = \(\frac{2}{\sqrt{\left(m-2\right)^2+1}}\) lớn nhất.

Vì 2 > 0; \(\sqrt{\left(m-2\right)^2+1}\) > 0 ∀ m nên

A lớn nhất khi (m - 2)\(^2\) + 1 là nhỏ nhất.

(m - 2)\(^2\) ≥ 0 ∀ m

(m - 2)\(^2\) + 1 ≥ 1 ∀ m

\(\sqrt{\left(m-2\right)^2+1}\) ≥ 1 ∀ m

A = \(\frac{2}{\sqrt{\left(m-2^{}\right)^2+1}}\)\(\frac21=2\) dấu bằng xảy khi m - 2 = 0

suy ra m = 2

Vậy khoảng cách từ gốc tọa độ đến đồ thị lớn nhất là \(2\) khi m = 2




AH
Akai Haruma
Giáo viên
9 tháng 10 2023

** Sửa đề: $m\neq 0; m\neq -1$

Lời giải:

Gọi đths đã cho là $(d)$.

Gọi $A,B$ lần lượt là giao điểm của $(d)$với trục $Ox, Oy$.

Do $A\in Ox$ nên $y_A=0$

$A\in (d)\Rightarrow y_A=mx_A+x_A+1$

$\Leftrightarrow 0=x_A(m+1)+1$

$\Leftrightarrow x_A=\frac{-1}{m+1}$

Do $B\in Oy$ nên $x_B=0$

$y_B=mx_B+x_B+1=m.0+0+1=1$

Gọi $h$ là khoảng cách từ gốc tọa độ đến $(d)$. 

Theo hệ thức lượng trong tam giác vuông:

$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{x_A^2}+\frac{1}{y_B^2}$

$\Leftrightarrow \frac{1}{h^2}=1+(m+1)^2$

Với $m\neq -1$ thì không tìm được min $1+\frac{1}{(m+1)^2}$, tức là không tìm được max h. 

 

17 tháng 12 2019

Đặt: d: y = ( m+1 ) x + 3

+) TH1: m = -1

=> d: y = 3

=> Khoảng cách của gốc tọa độ tới d là: 3 (1)

+) Th2: m khác -1.

Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))

=> \(OA=\left|\frac{3}{m+1}\right|\)

Giao điểm của d với Oy là: \(B\left(0;3\right)\)

=> OB = 3.

Kẻ OH vuông với d tại H => AH  là khoảng cách từ O tới d

Xét tam giác OAB vuông tại O. Có OH là đường cao:

=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)

=> \(OH< 3\)

=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)

Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.

16 tháng 10 2020

len google bn oi

NV
22 tháng 8 2021

Với \(m=2\Rightarrow y=5\) khoảng cách từ O đến d bằng 5 (ktm)

Với \(m\ne2\):

Gọi A là giao điểm của d với Ox \(\Rightarrow A\left(-\dfrac{5}{m-2};0\right)\Rightarrow OA=\dfrac{5}{\left|m-2\right|}\)

Gọi B là giao điểm của d với Oy \(\Rightarrow B\left(0;5\right)\Rightarrow OB=5\)

Trong tam giác vuông OAB, hạ \(OH\perp AB\Rightarrow\) OH là khoảng cách từ O đến d \(\Rightarrow OH=3\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{OH^2}\Leftrightarrow\dfrac{\left(m-2\right)^2}{25}+\dfrac{1}{25}=\dfrac{1}{9}\)

\(\Leftrightarrow\left(m-2\right)^2=\dfrac{16}{9}\Rightarrow\left[{}\begin{matrix}m-2=\dfrac{4}{3}\\m-2=-\dfrac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{10}{3}\\m=\dfrac{2}{3}\end{matrix}\right.\)

18 tháng 12 2022

tại sao OH = 3 vậy ạ

 

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:

Nếu $(1)$ song song với $Ox$ thì $2m-3=0$

Khi đó, ptđt $(1)$ là: $y=-1$. Khoảng cách từ $O$ đến $(1)$ là: $|-1|=1$

Nếu $(1)$ song song với $Oy$ không xét, vì hệ số của $y$ khác $0$ nên $(1)$ luôn cắt $Oy$

Nếu $(1)$ cắt được cả Ox, Oy thì trước tiên $2m-3\neq 0\Leftrightarrow m\neq \frac{3}{2}$

Gọi $A, B$ là giao của $(1)$ với lần lượt trục $Ox, Oy$

$A\in Ox$ nên $y_A=0$. Ta có:

$0=y_A=(2m-3)x_A-1\Rightarrow x_A=\frac{1}{2m-3}$

$B\in Oy$ nên $x_B=0$. Ta có:

$y_B=(2m-3)x_B-1=-1$

Theo hệ thức lượng trong tam giác vuông, khoảng cách từ $O$ đến $(1)$ (gọi là $d$) thỏa mãn:
$\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=(2m-3)^2+1$

Để $d_{\max}$ thì $\frac{1}{d^2}$ min hay $(2m-3)^2+1$ min 

Điều này xảy ra khi $(2m-3)^2=0$ (vô lý vì $m\neq \frac{3}{2}$)

Vậy khoảng cách max là $1$ khi $m=\frac{3}{2}$

(d): \(y=\left(m^2+3\right)x+4\)

=>\(\left(m^2+3\right)x-y+4=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m^2+3\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m^2+3\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}\)

\(m^2+3>=3\forall m\)

=>\(\left(m^2+3\right)^2>=9\forall m\)

=>\(\left(m^2+3\right)^2+1>=10\forall m\)

=>\(\sqrt{\left(m^2+3\right)^2+1}>=\sqrt{10}\forall m\)

=>\(\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}< =\dfrac{4}{\sqrt{10}}\forall m\)

=>\(d\left(O;\left(d\right)\right)< =\dfrac{4}{\sqrt{10}}\forall m\)

Vậy: Khoảng cách từ O(0;0) đến (d) lớn nhất bằng \(\dfrac{4}{\sqrt{10}}=\dfrac{4\sqrt{10}}{10}=\dfrac{2\sqrt{10}}{5}\) khi m=0