chứng minh 1/20x23+1/23x26+1/26x29+...+1/77x80 mà <1/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A=1/20*23+1/23*26+...+1/77*80
=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)
=1/3*3/80=1/80<1/79

Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có :
\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3.\frac{3}{80}\)
\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu )
Vậy \(A< 1\)
Chúc bạn học tốt ~

\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)
\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)
Vậy : ...
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)

đặt A=9/20x23+9/23x26+...+9/77x80
<=>\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(\Rightarrow A=3\cdot\frac{3}{80}\)
\(\Rightarrow A=\frac{9}{80}\)

đặt A=32/20x23+32/23x26+...+32/77x80
\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3\cdot\frac{3}{80}\)
\(=\frac{9}{80}\)

a) \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2007x2009}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2009}\right)=\frac{1}{2}\cdot\frac{2008}{2009}=\frac{1004}{2009}\)
....
các bài cn lại bn lm tương tự nha
b, \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
3A = \(\dfrac{1}{6}+\dfrac{1}{18}+...+\dfrac{1}{330}\)
3A-A = \(\dfrac{1}{6}-\dfrac{1}{990}\)
2A = 82/495
A =82/495 : 2
A=41/495

\(\frac{1}{11×14}+\frac{1}{14×17}+\frac{1}{17×20}+\frac{1}{20×23}+\frac{1}{23×26}\)
\(=\frac{1}{3}×\left(\frac{3}{11×14}+\frac{3}{14×17}+\frac{3}{17×20}+\frac{3}{20×23}+\frac{3}{23×26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\frac{15}{286}\)
\(=\frac{5}{286}\)
\(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\)
\(=\frac{1}{3}\times\left(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{26}\right)\)
= 5/286

a) \(\frac{3}{4\times9}+\frac{3}{9\times14}+...+\frac{3}{54\times59}+\frac{3}{59\times64}\)
\(=\frac{3}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+...+\frac{5}{59\times64}\right)\)
\(=\frac{3}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+...+\frac{64-59}{59\times64}\right)\)
\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{59}-\frac{1}{64}\right)\)
\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{64}\right)\)
\(=\frac{9}{64}\)
b) \(\frac{2}{8\times11}+\frac{2}{11\times14}+...+\frac{2}{23\times26}+\frac{2}{26\times29}\)
\(=\frac{2}{3}\times\left(\frac{3}{8\times11}+\frac{3}{11\times14}+...+\frac{3}{26\times29}\right)\)
\(=\frac{2}{3}\times\left(\frac{11-8}{8\times11}+\frac{14-11}{11\times14}+...+\frac{29-26}{26\times29}\right)\)
\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{26}-\frac{1}{29}\right)\)
\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{29}\right)\)
\(=\frac{7}{116}\)
Đặt \(A=\dfrac{1}{20\cdot23}+\dfrac{1}{23\cdot26}+...+\dfrac{1}{77\cdot80}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{20\cdot23}+\dfrac{3}{23\cdot26}+...+\dfrac{3}{77\cdot80}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)=\dfrac{1}{3}\cdot\dfrac{3}{80}=\dfrac{1}{80}< \dfrac{1}{9}\)
Đặt \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+\ldots+\frac{1}{77.80}\)
\(\) \(A=\frac13.\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+\cdots+\frac{1}{77.80}\right)\)
\(A=\frac13.\left(\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+\cdots+\frac{80-77}{77.80}\right.\)
\(\) \(A=\frac13.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+\cdots+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=\frac13.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=\frac13.\frac{3}{80}\)
\(\) \(A=\frac{1}{80}\)
Ta thấy, \(\frac{1}{80}<\frac19\)
\(\Rightarrow A<\frac19\)