Cho tam giác abc vuông tại b m là
một điểm nằm tùy ý trên cạnh bc hãy so sánh ab am ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔBAM vuông tại B
=>AM là cạnh huyền
=>AM là cạnh lớn nhất
=>AM>AB
Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC) Từ đây suy ra . Lại có M là trung điểm của AC nên . |
Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM (1). Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra (2) Lại có AM = MC (3). (4) Từ (2), (3) và (4) suy ra (c.g.c) Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm). |
ôi dào , bài nhu thế này ta ko bt làm , phải làm sao đây ....?
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)
Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)
b) Xét \(\Delta BIM\)và \(\Delta BCA\)
Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)
\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow BI\text{.}BA=BM.BC\)
C H I B D A
a) Xét ΔABC vuông tại A và ΔMOC vuông tại M có
\(\widehat{MCO}\) chung
Do đó: ΔABC\(\sim\)ΔMOC(g-g)
b) Xét ΔBMH vuông tại M và ΔBAC vuông tại A có
\(\widehat{MBH}\) chung
Do đó: ΔBMH\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BM}{BA}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BM\cdot BC=BA\cdot BH\)(đpcm)
ΔABM vuông tại B
=>AM là cạnh huyền
=>AM là cạnh lớn nhất trong ΔABM
=>AB<AM(1)
Xét ΔABM có \(\widehat{AMC}\) là góc ngoài tại đỉnh M
nên \(\widehat{AMC}=\widehat{MBA}+\widehat{MAB}=90^0+\widehat{MAB}>90^0\)
Xét ΔAMC có \(\widehat{AMC}>90^0\)
nên AC là cạnh lớn nhất trong ΔAMC
=>AM<AC(2)
Từ (1),(2) suy ra AB<AM<AC
ab>ac>am