K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=k\)

=>\(\left\{{}\begin{matrix}c=ak\\b=ck=ak\cdot k=ak^2\\a=bk=ak^2\cdot k=ak^3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=ak\\b=ak^2\\k=1\end{matrix}\right.\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2\cdot b^{2019}\cdot c}{a^{2022}}=\dfrac{a^2\cdot a^{2019}\cdot a}{a^{2022}}=\dfrac{a^{2022}}{a^{2022}}=1\)

19 tháng 3

M=1

31 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)

Khi đó P = \(\frac{2019a-b}{c+d}+\frac{2019b-c}{d+a}+\frac{2019c-d}{a+b}+\frac{2019d-a}{b+c}\)

\(=\frac{2019a-a}{2a}+\frac{2019b-b}{2b}+\frac{2019c-c}{2c}+\frac{2019d-d}{2d}\)

\(=1014+1014+1014+1014=1014.4=4056\)

1
AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Biểu thức viết không được rõ ràng lắm. Bạn viết lại để mọi người hiểu đề và hỗ trợ tốt hơn nhé.

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

\(T=\dfrac{a^{2022}+a^{2022}+a^{2022}}{\left(3a\right)^{2022}}=\dfrac{3}{3^{2022}}=\dfrac{1}{3^{2021}}\)

21 tháng 12 2020

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

mà \(a+b+c\ne0\)

nên \(a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)

\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Đoạn cuối em bị nhầm rồi kìa. \(\frac{a^{2020}+b^{2020}+c^{2020}}{(a+b+c)^{2020}}=\frac{3a^{2020}}{(3a)^{2020}}=\frac{3}{3^{2020}}=\frac{1}{3^{2019}}\)

29 tháng 8 2021

anh đi anh nhớ quê nha 

nhớ canh rau muống nhớ cà dầm tương 

nhớ thằng đẩy bố xuống mương 

bố mà bắt được bố tương vỡ mồm

21 tháng 12 2020

Ta có : a3 + b3 + c3 = 3abc

=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0

=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

=> a2 + b2 + c2 - ab- ac - bc = 0

=> 2(a2 + b2 + c2 - ab- ac - bc) = 0

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0

=> (a - b)2 + (b - c)2 + (a - c)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)

Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)

10 tháng 7 2016

sao ko aj trả lời za