Câu 17: Cho điểm A nằm ngoài đường tròn (O;R)(BC là tiếp điểm), tia AO cắt BC tại I. Điểm H thuộc đoạn thẳng BI(H khác B và H khác I). Đường thẳng d vuông góc với OH tại H, d cắt AB, AC lần lượt tại P và Q. Chứng minh tứ giác OHBP nội tiếp đường tròn (kẻ hình giúp mik với ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét tứ giác AOBS có
\(\widehat{SAO}+\widehat{SBO}=180^0\)
Do đó: AOBS là tứ giác nội tiếp

a) Xét (O) có
\(\widehat{EFA}\) là góc nội tiếp chắn cung EA
\(\widehat{EBA}\) là góc nội tiếp chắn cung EA
Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MBE}=\widehat{MFA}\)
Xét ΔMBE và ΔMFA có
\(\widehat{MBE}=\widehat{MFA}\)(cmt)
\(\widehat{AMF}\) chung
Do đó: ΔMBE∼ΔMFA(g-g)
Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)

a: Xét tứ giác SAOB có
\(\widehat{SAO}+\widehat{SBO}=180^0\)
Do đó: SAOB là tứ giác nội tiếp
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
hay S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OS là đường trung trực của AB
hay OS⊥AB

a: Xét tứ giác ABCO có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABCO là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,C,O cùng thuộc đường tròn đường kính OA
tâm là trung điểm của OA
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại M và M là trung điểm của BC
Xét ΔOCA vuông tại C có CM là đường cao
nên \(OM\cdot OA=OC^2\)
mà OC=OE(=R)
nên \(OE^2=OM\cdot OA\)
c: Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF
Xét ΔOGA vuông tại G và ΔOMH vuông tại M có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔOMH
=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OM=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)

a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Để chứng minh tứ giác \(O H B P\) nội tiếp, ta cần chỉ ra rằng tổng hai góc đối nhau bằng \(180^{\circ}\), hoặc có một góc là góc nội tiếp chắn nửa đường tròn.
mình không thể trực tiếp vẽ hình nhưng bạn có thể làm theo các bước sau để dựng hình:
Xét tứ giác OHBP có \(\widehat{OHP}=\widehat{OBP}=90^0\)
nên OHBP là tứ giác nội tiếp