1+4/28+4/70+4/130+...+4/10300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+...+\frac{3}{10300}\)
\(=\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{100\times103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}=\frac{102}{103}\)

Ta có:
1/4 = 1/3( 1-1/4)
1/28 = 1/3( 1/4 - 1/7)
1/70 = 1/3( 1/7 - 1/10)
..............................
1/10300 = 1/3( 1/100 - 1/103)
Cộng vế với vế ta có:
S = 1/4+1/28+1/70+1/130+...+1/10300 = 1/3( 1-1/103)
S = 34/103

B=1/4+1/28+1/70+...+1/10300
=> 3B=3/4+3/28+...+3/10300
=>3B=1-1/4+1/4-1/7+...+1/100-1/103
=>3B=1-1/103
=>3B=102/103
=>B=34/10
Chúc bạn học tốt nha!

\(3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(3M=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{97.100}\)
\(3M=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(3M=1-\frac{1}{100}\)
\(3M=\frac{99}{100}\)
\(M=\frac{33}{100}\)


\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{16}\right)\)
\(=\frac{1}{3}.\frac{15}{16}=\frac{5}{16}\)

=4.\(\left(\frac14+\frac{1}{28}+\frac{1}{70}+\cdots+\frac{1}{10300}\right)\)
=4.\(\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots+\frac{1}{100.103}\right)\)
=\(\frac43.\left(\frac{3}{1.4}+\frac{3}{4.7}+\ldots+\frac{3}{100.103}\right)\)
=\(\frac43.\left(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\cdots+\frac{103-100}{100.103}\right)\)
=\(\frac43.\left(\frac11-\frac14+\frac14-\frac17+\cdots+\frac{1}{100}_{}-\frac{1}{103}\right)\)
=\(\frac43.\left(1-\frac{1}{103}\right)\)
=\(\frac43.\frac{102}{103}\)
=\(\frac{136}{103}\)