K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3

Điều kiện: \(n\in{\displaystyle\mathbb{N} ^{*}}\)

\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\)

\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\)

\(S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{n^2}\)

\(S=n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Nhận xét: +) \(n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< n-1\)

\(\Rightarrow S< n-1\) (*)

+) \(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\...\\\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>1\)

\(\Rightarrow n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>n-1-1=n-2\)

\(\Rightarrow S>n-2\) (**)

Từ (*)(**) suy ra: \(n-2< S< n-1\)

Mà \(n-1\) và \(n-2\) là 2 số nguyên liên tiếp nên:

S không thể là một số nguyên

Vậy S không thể là một số nguyên

14 tháng 3

\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\)
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\)
\(S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{n^2}\)
\(S=n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Nhận xét: +) \(n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< n-1\)
(\Rightarrow S< n-1\) (*)

+)\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\...\\\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>1\) \(\Rightarrow n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>n-1-1=n-2\) \(\Rightarrow S>n-2\) (**)

Từ (*) và (**) suy ra: \(n-2< S< n-1\) Mà \(n-1\) và \(n-2\) là 2 số tự nhiên liên tiếp nên: S không thể là một số tự nhiên

Vậy S không thể là một số tự nhiên

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

25 tháng 7 2019

\(S=\frac{3}{4}+\frac{8}{9}+...+\frac{n^2-1}{n^2}\)

    \(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

       \(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n-1\)(1)

+ Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\frac{1}{2^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)

Nên S > n - 1 - ( 1 - 1/n) = n - 2 + 1/n > n - 2 ( vì 1/n > 0)    (2)

Từ (1),(2) => n - 2 < S < n - 1 mà n \(\in\)N, n \(\ge\)2 => đpcm

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

7 tháng 4 2023

     

25 tháng 7 2019

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

3 tháng 5 2019

S = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/2019^2

S = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)

S = 2018 - (1/4 + 1/9 + 1/16 + ... + 1/2019^2)

đặt A  = 1/4 + 1/9 + 1/16 + ... + 1/2019^2

có : 1/4 = 1/2*2 < 1/1*2

1/9 = 1/3*3 < 1/2*3

...

1/2019^2 < 1/2018*2019

=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + /12018*2019

=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+  ... + 1/2018 - 1/2019

=> A < 1 - 1/2019

=> A < 2018/2019

=> A không phải số nguyên

S = 2018 - A

=> S không phải 1 số nguyên