có bao nhiêu cách xếp 3 bạn nam,2 bạn nữ sao cho nam và nữ bên cạnh nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét hàng ngang gồm 6 vị trí như sau: _ _ _ _ _ _
Ta xem 3 bạn nữ đứng cạnh nhau như 1 nhóm thì có 4 cách xếp nhóm này. Hơn nữa cứ mỗi vị trí như vậy lại có 2 cách xếp các thành viên trong nhóm. (Do bạn nữ Ashley phải đứng ở giữa).
3 vị trí còn lại thì sẽ có \(1.2.3=6\) cách sắp xếp các bạn nam.
Do đó có tất cả \(4.2.6=48\) cách xếp thỏa mãn yêu cầu bài toán.
Có 4 bạn nam và 2 bạn nữ có bao nhiêu cách xếp 6 bạn thành hàng dọc sao cho 4 bạn nam đứng cạnh nhau


Chọn C.
Ta coi 3 bạn nữ là vị trí thì số cách sắp xếp 6 là 6!, sau đó xếp 3 bạn nữ vào vị trí đó là 3! Nên số cách sắp xếp là 6!.3!

Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3!.3!.2! = 72

Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3 ! . 3 ! . 2 ! = 72

Xếp 2 bạn nữ đứng trước, số cách là 2!.
Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn; xếp 2 bạn nam đó là .
Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.
Số cách xếp 7 bạn này là 7!.
Áp dụng quy tắc nhân; số cách xếp tất cả là:
Chọn B.
Giả sử ta có 3 bạn nam (A, B, C) và 2 bạn nữ (D, E). Để nam và nữ đứng cạnh nhau, ta có thể nhóm các bạn nam và nữ thành 2 nhóm:
Vì có 3 bạn nam và 2 bạn nữ, ta có thể xếp chúng theo 2 cách: