2x=5y và x+y= -14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1) Theo đề bài ta có:
\(\frac{x}{5}=\frac{y}{2}\) và x + y = 14
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
Khi đó:\(\begin{cases}x=5.2=10\\y=2.2=4\end{cases}\)
Vậy x = 10 ; y = 4
2) \(\frac{x}{y}=\frac{4}{7}\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
\(\Rightarrow x.y=28\leftrightarrow4k.7k=28\)
\(28k^2=28\)
\(k^2=1\)
\(k=1;-1\)
+) \(k=1\Rightarrow\begin{cases}x=4\\y=7\end{cases}\)
+\(k=-1\Rightarrow\begin{cases}x=-4\\y=-7\end{cases}\)
Chúc bạn học tốt
1) Có: \(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
\(\Leftrightarrow\begin{cases}x=5\cdot2=10\\y=2\cdot2=4\end{cases}\)
2)Có: \(\frac{x}{y}=\frac{4}{7}\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Mà \(xy=28\Leftrightarrow4k\cdot7k=28\Rightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
+) Vơi k =1 thì x=4 ;y=7
+)Với k=-1 thì x=-1;y=-7

a) \(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=2.5=10\\y=2.2=4\end{cases}}\)
b) \(\frac{x}{4}=\frac{y}{3}=t\Rightarrow x=4t,y=3t\)
\(xy=4t.3t=12t^2=12\Leftrightarrow t^2=1\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)
\(t=1\Rightarrow\hept{\begin{cases}a=4t=4\\b=3t=3\end{cases}}\)
\(t=-1\Rightarrow\hept{\begin{cases}a=4t=-4\\b=3t=-3\end{cases}}\)


\(a,\frac{x}{3}=\frac{y}{4}\) và x + y = 14
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{4}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
\(b,-2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
Vậy : \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\Rightarrow\hept{\begin{cases}x=50\\y=-20\end{cases}}\)

\(\frac{x}{3}=\frac{y}{4}\) và x + y = 14
áp dụng t/c DTSBN ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{4}=2\end{cases}}\)
=> \(\hept{\begin{cases}x=6\\y=8\end{cases}}\)
câu kia tương tự!!
chúc bạn học tốt!! ^^
546464575475676876876898987905625435465546577657676575643535464565765473
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\times3\\y=2\times4\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
b) Có nhầm đề không vậy bạn ?

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

Giải:
a) Theo đề ra, ta có:
\(2x=5y\) và \(x+y=14\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=2\\\dfrac{y}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2.5\\y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
Vậy \(x=10\) và \(y=4\).
b) Theo đề ra, ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\) và \(2x-y+3z=60\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x}{4}=\dfrac{3z}{15}=\dfrac{2x-y+3z}{4-4+15}=\dfrac{60}{15}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4.2\\y=4.4\\z=4.5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=16\\z=20\end{matrix}\right.\)
Vậy \(x=8\); \(y=16\) và \(z=20\).
Chúc bạn học tốt!!!
a) Ta có :
\(x+y=14\)
\(2x=5y\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dunhj tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Leftrightarrow x=4\\\dfrac{y}{5}=2\Leftrightarrow y=10\end{matrix}\right.\)
Vậy ....................
b) Ta có :
\(2x-y+3z=60\)
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{2x}{4}=\dfrac{y}{4}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{4}=\dfrac{y}{4}=\dfrac{3z}{15}=\dfrac{2x-y+3z}{4-4+15}=\dfrac{60}{15}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\Leftrightarrow x=2\\\dfrac{y}{4}=4\Leftrightarrow y=16\\\dfrac{z}{5}=4\Leftrightarrow z=20\end{matrix}\right.\)
Vậy ....


??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
2x=5y => y=2x/5
x+2x/5=-14 => 7x/5=-14 x = -10
y = -4
2x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{2}\)
mà x+y=-14
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{-14}{7}=-2\)
=>\(\left\{{}\begin{matrix}x=-2\cdot5=-10\\y=-2\cdot2=-4\end{matrix}\right.\)