Tìm n thuộc N để n+7/n-2 tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




TK :
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

Ta tìm số tự nhiên n để \(\frac{n+7}{n-2}\) rút gọn được
Gọi d là ước chung nguyên tố của n + 7 và n - 2
=> n+ 7 chia hết cho d
n - 2 chia hết cho d
=> (n+7) - (n- 2) chia hết cho d => 9 chia hết cho d
Mà d nguyên tố => d = 3
=> tìm n để n + 7 chia hết cho 3 và n - 2 chia hết cho 3
Do n + 7 = (n - 2) + 9 nên nếu n - 2 chia hết cho 3 thì n+ 7 sẽ chia hết cho 3
Vậy chỉ cần tìm n để n - 2 chia hết cho 3 => n - 2 = 3k (k \(\in\) N* vì n > 2) => n = 3k + 2
Với n = 3k + 2 (k \(\in\) N*) thì \(\frac{n+7}{n-2}\) rút gọn được
=> Với n \(\ne\) 3k + 2 (k \(\in\) N*) hay n là số chia hết cho 3 hoặc chia cho 3 dư 1 thì \(\frac{n+7}{n-2}\) tối giản



$\frac{18n+3}{21n+7}$18n+321n+7 không tối giản
gọi $d\inƯC\left(18n+3;21n+7\right)$d∈ƯC(18n+3;21n+7)
18n+3 chia hết cho d=>126n+21 chia hết cho d
21n+7 chia hết cho d=>126n+42 chia hết cho d
=>21 chia hết cho d=>d=3;7
xét d=3=>21n+7 chia hết cho 3 (loại)
=>d=7=>36n+6 chia hết cho 7=>35d+(n+6) chia hết cho 7
=>n+6 chia hết cho 7=>n-1 =7k=>n=7k+1
vậy để 18n+3/21n+7 tg thì n=7k+1

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d (bạn viết kí hiệu chia hết nha!!)
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác (viết kí hiệu nha) 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
Chúc bạn học tốt!!
Bạn nhớ k đúng cho mình nha!!
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
n+7/n+7-9=1-9/n+7
➜n+7∈U(9)và n ∉u(9) âm
U(9)∈1,3,9
n+7
1
3
9
n
-6
-4
2
mà n ∈N
nên n=2
Vậy n=2