Bài 1: Tính giá trị của các biểu thức đại số sau:
a) A=2x-y^2 +4x-2 tại x=2;y=1.
b) B=3x -y/ x+y -1 + y^2 tại |x|=1, y =- 3.
c) C = 1/16. x^4 + 3x^2 -5/4.x + 5 tại x =4
giúp mình gấp với ạ mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a, Thay `x=-1/2` vào A ta có:
\(A=2x-4x^2+\dfrac{1}{2}\\
=2.\dfrac{-1}{2}-4.\left(\dfrac{-1}{2}\right)^2+\dfrac{1}{2}\\
=\left(-1\right)-4.\dfrac{1}{4}+\dfrac{1}{2}\\
=\left(-1\right)-1+\dfrac{1}{2}\\
=-\dfrac{3}{2}\)
b, Thay a=-1, b=2 vào biểu thức ta có:
\(5a^2b-3ab^2\\
=5.\left(-1\right)^2.2-3.\left(-1\right).2^2\\
=5.1.2+3.1.4\\
=10+12\\
=22\)
a, \(x^2-2x+5\)
Với x = 1 => \(1-2+5=4\)
Với x = -2 => \(4-2\left(-2\right)+5=13\)
b, \(2x^2+4y^3-3xy+2\)
Với y = 1 ; x = 1 => \(2+4-3+2=5\)
Với x = -3 ; y = 5 => \(2.9+4.125-3.\left(-3\right).5+2=18+500+45+2=565\)
a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)
\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)
b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)
\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)
a) `A=2x+1-x^2`
`=-(x^2-2x-1)`
`=-(x^2-2x+1)+2`
`=-(x-1)^2+2`
Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`
`=> A_(max)=2 <=> x=1`
b) `B=4x-4x^2-5`
`=-(4x^2-4x+5)`
`=-(4x^2-4x+1)-4`
`=-[(2x)^2-2.2x.1+1^2]-4`
`=-(2x-1)^2+4`
`=> B_(max)=4 <=> x=1/2`
\(2,\\ a,=-3x^3y^3z^4\\ b,=\dfrac{1}{4}xy^2\cdot\dfrac{1}{4}x^4y^4\cdot\left(-\dfrac{4}{5}yz^2\right)=-\dfrac{1}{20}x^5y^7z^2\\ c,=-\dfrac{15}{14}x^6y^{11}z^{10}\\ 3,\\ a,=9\left(-1\right)\left(-\dfrac{1}{27}\right)=\dfrac{1}{3}\\ b,=-\dfrac{1}{5}\left(-8\right)=\dfrac{8}{5}\\ c,=\dfrac{4}{9}a\cdot36\left(-1\right)=-16a\)
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) Thay `x=1/2` vào A được:
`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`
b) Thay `x=2;y=-2` vào B được:
`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.
a) Với \(x=\dfrac{1}{2}\) ta được:
\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)
\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)
\(\Rightarrow A=\dfrac{5}{4}\)
a) Tại x = 2, giá trị của biểu thức đại số \(3x - 2\)= \(3.2 - 2 = 6 - 2 = 4\).
b) Tại x = – 3, giá trị của đa thức P(x) = \( - 4x + 6\) bằng:
\(P( - 3) = - 4. - 3 + 6 = 12 + 6 = 18\).
a) \(A = 2 x - y^{2} + 4 x - 2\) tại \(x = 2 , y = 1\)
Thay giá trị của \(x = 2\) và \(y = 1\) vào biểu thức:
\(A = 2 \left(\right. 2 \left.\right) - 1^{2} + 4 \left(\right. 2 \left.\right) - 2\) \(A = 4 - 1 + 8 - 2\) \(A = 9\)
Vậy giá trị của \(A\) là 9.
b) \(B = \frac{3 x - y}{x + y - 1} + y^{2}\) tại \(\mid x \mid = 1 , y = - 3\)
Thay giá trị \(x = 1\) và \(y = - 3\) vào biểu thức (vì \(\mid x \mid = 1\) nghĩa là \(x = 1\)):
\(B = \frac{3 \left(\right. 1 \left.\right) - \left(\right. - 3 \left.\right)}{1 + \left(\right. - 3 \left.\right) - 1} + \left(\right. - 3 \left.\right)^{2}\) \(B = \frac{3 + 3}{1 - 3 - 1} + 9\) \(B = \frac{6}{- 3} + 9\) \(B = - 2 + 9 = 7\)
Vậy giá trị của \(B\) là 7.
c) \(C = \frac{1}{16} x^{4} + 3 x^{2} - \frac{5}{4} x + 5\) tại \(x = 4\)
Thay giá trị \(x = 4\) vào biểu thức:
\(C = \frac{1}{16} \left(\right. 4 \left.\right)^{4} + 3 \left(\right. 4 \left.\right)^{2} - \frac{5}{4} \left(\right. 4 \left.\right) + 5\) \(C = \frac{1}{16} \left(\right. 256 \left.\right) + 3 \left(\right. 16 \left.\right) - \frac{5}{4} \left(\right. 4 \left.\right) + 5\) \(C = 16 + 48 - 5 + 5\) \(C = 64\)
Vậy giá trị của \(C\) là 64.
a: Khi x=2;y=1 thì \(A=2\cdot2-1^2+4\cdot2-2\)
=4-1+8-2
=3+8-2
=3+6=9
c: Thay x=4 vào C, ta được:
\(C=\dfrac{1}{16}\cdot4^4+3\cdot4^2-\dfrac{5}{4}\cdot4+5\)
\(=16+3\cdot16-5+5=64\)