K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để đồ thị hàm số y=(3-m)x+3m+2 song song với đường thẳng y=5x-4 thì \(\left\{{}\begin{matrix}3-m=5\\3m+2\ne-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=3-5=-2\\3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

13 tháng 10 2018

Hàm số  y   =   ( 2 m   –   2 )   x   +   m   –   2 là hàm số bậc nhất khi  2 m   –   2 ≠     0   ⇔   m   ≠   1

Để d // d’ thì  2 m − 2 = 3 m − 3 ≠ − 3 m ⇔ m = 5 2 m ≠ 3 4 ⇔ m = 5 2        (thỏa mãn)

Vậy  m = 5 2

Đáp án cần chọn là: C

26 tháng 12 2021

a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)

để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)

b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì 

\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)

28 tháng 10 2023

Sửa đề: (d): y=(m-3)x-2m+2

a: Để hàm số đồng biến thì m-3>0

=>m>3

b: Khi m=2 thì (d): y=(2-3)x-2*2+2=-x-2

loading...

 

c: Để hai đường song song thì

\(\left\{{}\begin{matrix}3m+1=m-3\\-2m+2< >4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=-4\\-2m< >2\end{matrix}\right.\Leftrightarrow m=-2\)

d: tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-2}{m-3}\end{matrix}\right.\)

=>\(OA=\left|\dfrac{2m-2}{m-3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=0\left(m-3\right)-2m+2=-2m+2\end{matrix}\right.\)

=>\(OB=\left|-2m+2\right|=\left|2m-2\right|\)

ΔOAB vuông cân tại O

=>OA=OB

=>\(\left|2m-2\right|=\left|\dfrac{2m-2}{m-3}\right|\)

=>\(\left|2m-2\right|\left(\dfrac{1}{\left|m-3\right|}-1\right)=0\)

=>\(\left[{}\begin{matrix}2m-2=0\\m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=4\\m=2\end{matrix}\right.\)

13 tháng 1 2021

a.   Để hs (1) đồng biến trên R :

        \(\Leftrightarrow-m-18>0\)

        \(\Leftrightarrow-m>18\)

        \(\Leftrightarrow m< -18\)

     Vậy \(m< -18\) thì hs (1) đồng biến trên R

b.   Do ĐTHS (1) // đ.t \(y=-19x-5\) nên :

       \(\left\{{}\begin{matrix}-m-18=-19\\3m+1\ne-5\end{matrix}\right.\)    \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne-2\end{matrix}\right.\)

c.   Vì ĐTHS (1) đi qua điểm \(A\left(-1;2\right)\) nên ta có : x = -1 và y = 2

      Thay x = -1 và y = 2 vào (1) ta được :

            \(2=\left(-m-18\right).\left(-1\right)+3m+1\)

       \(\Leftrightarrow2=m+18+3m+1\)

       \(\Leftrightarrow-17=4m\)

       \(\Leftrightarrow m=\dfrac{-17}{4}\)

13 tháng 1 2021

a. hàm số (1) đồng biến trên R khi -m-18 > 0 <=> m < -18 .  Vậy m < -18 thì hàm số (1) đồng biến.        b. đồ thị hàm số (1) song song với đường thẳng y= -19x-5             <=> -m-18=-19 và 3m+1 khác -5  <=> m= 1   và m khác 4/3 .                               Vậy m=1 và m khác 4/3 thì đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5  .     c.  đồ thị hàm số  y=(-m-18)x+3m+1 đi qua A(-1;2) => x=-1 ; y=2                 => 2=(-m-18)*(-1)+3m+1 <=>  2= m+18+3m+1 <=> 4m=17 <=> m=17/4 .            Vậy m=17/4 thì đồ thị hàm số  y=(-m-18)x+3m+1 đi qua A(-1;2)                                              

 

 

 

 

12 tháng 11 2023

2:

a: Khi m=-1 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}2x+y=-3+1=-2\\3x+2y=-2-3=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+2y=-4\\3x+2y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2x+y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=-2-2x=-2-2=-4\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+2y=6m+2\\3x+2y=2m-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+2y-3x-2y=6m+2-2m+3\\2x+y=3m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=4m+5\\y=3m+1-2x=3m+1-8m-10=-5m-9\end{matrix}\right.\)

x<1 và y<6

=>\(\left\{{}\begin{matrix}4m+5< 1\\-5m-9< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m< -4\\-5m< 15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m>-3\end{matrix}\right.\Leftrightarrow-3< m< -1\)

12 tháng 11 2023

Bài 1

ĐKXĐ: m ≠ 3

a) Thay x = 0; y = -2 vào hàm số, ta có:

(m - 3).0 - 2m + 2 = -2

⇔ -2m = -2 - 2

⇔ -2m = -4

⇔ m = -4/(-2)

⇔ m = 2 (nhận)

Vậy m = 2 thì đồ thị hàm số cắt trục tung tại điểm có tung độ là -2

b) Để (d) // (d1) thì:

m - 3 = 3m + 1 và -2m + 2 4

*) m - 3 = 3m + 1

⇔ 3m - m = -3 - 1

⇔ 2m = -4

⇔ m = -2 (nhận)

*) -2m + 2 ≠ 4

⇔ -2m ≠ 4 - 2

⇔ -2m ≠ 2

⇔ m ≠ -1

Vậy m = -2 thì (d) // (d1)

c) (d) cắt trục hoành nên:

(m - 3)x - 2m + 2 = 0

⇔ (m - 3)x = 2m - 2

⇔ x = (2m - 2)/(m - 3)

= (2m - 6 + 4)/(m - 3)

= 2 + 4/(m - 3)

x nguyên khi 4 (m - 3)

⇒ m - 3 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}

⇒ m ∈ {-1; 1; 2; 4; 5; 7}

Vậy m ∈ {-1; 1; 2; 4; 5; 7} thì (d) cắt trục hoành tại điểm có hoành độ là số nguyên

16 tháng 12 2023

a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0

=>2m<-3

=>\(m< -\dfrac{3}{2}\)

b: Để (d)//(d1) thì

\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)

=>m=5

c: Thay y=5 vào y=3x-1, ta được:

3x-1=5

=>3x=6

=>x=6/3=2

Thay x=2 và y=5 vào (d), ta được:

\(2\left(2m+3\right)-2m+5=5\)

=>\(4m+6-2m+5=5\)

=>2m+11=5

=>2m=-6

=>m=-6/2=-3

d: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)

=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)

\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)

=>\(B\left(-2m+5;0\right)\)

\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)

=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)

=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)

=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)

=>\(4m^2-20m+25-4m-6=0\)

=>\(4m^2-24m+19=0\)

=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)