cho n là số nguyên dương không bé hơn 2022 thỏa mãn \(\frac{n-2022}{2122-n}\) là một số chính phương. tính tổng tất cả các giá trị của n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

Ta có:
2a + 2021b = 2022a + b - a
Vậy phân số ban đầu có thể viết lại dưới dạng:
(2022a + b = a + 20206)/(3a + 2019b) -
= (2022a + b)/(3a + 2019b) + (20206
- a)/(3a + 2019b)
= 674 + (20206 - a)/(3a + 2019b)
Vì a, b là các số nguyên dương nên ta có:
0 < (20206 - a)/(3a + 2019b) < 1
Vậy phân số ban đầu không tối giản vì nó có thể viết dưới dạng tổng của một số nguyên và một phân số có tử số nhỏ hơn mẫu số.

Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9.
TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.
TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.
TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.

Lời giải:
Gọi $\text{B(2021)}$ là bội của $2021$
$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$
Mà $2021=43\times 47$ không phải số nguyên tố
$\Rightarrow 2022^n-1$ không là số nguyên tố
$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố.

ta có : l2x+3l < hoặc = 5
5 - 3 = 2
2x phải bằng 2 hoặc bé hơn 2
=>x thuộc {0;1}
thây x là 0 và 1
ta có : 2.0 + 3 = 3 < 5
2.1 + 3 = 5 = 5
suy ra : x thuộc 0;1

\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)
mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)

