K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3

\(Q=\dfrac{2024a}{ab+2024a+2024}+\dfrac{b}{bc+b+2024}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{abc.a}{ab+abc.a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+c+1}{ac+c+1}=1\)

26 tháng 11 2024

sai

 

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

20 tháng 3 2018

\(P=\frac{a^3b^2c^2}{ab+a^2bc+abc}+\frac{ab^2c}{bc+b+abc}+\frac{abc^2}{ac+c+1}\)

\(=\frac{ }{ab\left(1+ac+c\right)}+\frac{ }{b\left(c+1+ac\right)}+\frac{ }{ac+c+1}\)

19 tháng 12 2024

(y - 1)2024 + |\(x+y-1\)| = 0

Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)

(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi 

 y - 1 = 0 và \(x+y-1\) = 0

y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:

\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)

Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:

A = 02024 + 12024 = 0 + 1 = 1 

15 tháng 10 2023

\(P=2a^3+2b^3+6ab-2024\)

\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+6ab-2024\)

\(=2\left[1-3ab\left(a+b\right)\right]+6ab-2024\)

\(=2-6ab+6ab-2024\)

=-2022

15 tháng 10 2023

cái khúc dấu bằng thứ 2 và thứ 3, sao biến đổi mấy số trong ngoặc thành -6ab ạ

12 tháng 3 2016

Cho hình chữ nhật ABCD, tăng cạnh AB 36m, cạnh BC giảm 16% thì diện tíchmới lớn hơn diện tích cũ là 5%.độ dài ab sau khi tăng là... 

Giúp tớ vs

\(ab-ac+bc-c^2=-1\)

<=> \(a\left(b-c\right)+c\left(b-c\right)=-1\)

<=> \(\left(a+c\right)\left(b-c\right)=-1\)

Mà \(a,b,c\in Z\Rightarrow\left\{{}\begin{matrix}a+c\in Z\\b-c\in Z\end{matrix}\right.\)

- Nếu \(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\) => a + b = 0

- Nếu \(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\) => a + b = 0

Vậy M = 0

9 tháng 2 2022

thoi chuyển box toán lun duy cho zui ah

NV
5 tháng 8 2021

Đặt \(x=\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\)

\(\Rightarrow x^3=14-3\sqrt[3]{\left(5\sqrt[]{2}+7\right)\left(5\sqrt[]{2}-7\right)}\left(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\right)\)

\(\Rightarrow x^3=14-3x\)

\(\Rightarrow x^3+3x-14=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

\(\Rightarrow a+b+c=2\)

Đến đây sẽ giải là:

\(\Rightarrow\left(a+b+c\right)^2=4\)

\(\Rightarrow1+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow ab+bc+ca=\dfrac{3}{2}\)?

Không phải, đề bài sai

Ta có: \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3}< 2\)

Nên \(a+b+c=2\) là vô lý

\(\Rightarrow\) Không tồn tại bộ 3 số thực a;b;c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=1\end{matrix}\right.\)