cho tam giác abc ( ab< ac) nội tiếp đường tròn tâm o đường kính r. các đường cao ad,be,cf giao nhau tại h a)chứng minh tứ giác aehf nội tiếp đường tròn b?qua d kẻ đường thẳng song song è cắt be tại i và ac tại j. chứng minh di=dj
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{ABC}=180^0\)

a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: BFEC nội tiếp
=>góc HFE=góc HBC
=>góc HFE=góc HNM
=>FE//MN

Xét tứ giác AEHF có
^AEH + ^AFH = 1800
mà 2 góc này đối
Vậy tứ giác AEHF là tứ giác nt 1 đường tròn
ủa o.O còn phần b à, mình bổ sung nhé
Xét tứ giác BCEF có
^CEB = ^CKB = 900
mà 2 góc này kề, cùng nhìn cạnh BC
Vậy tứ giác BCEF là tứ giác nt 1 đường tròn

a: Xéttứ giác AEHF có góc AEH+góc AFH=180 độ
nên AEHF là tứ giác nội tiếp
c: Xét tứ giác AEDC có góc ADC=góc AEC=90 độ
nên AEDC là tứ giác nội tiếp
d: góc EDA=góc ABF
góc FDA=góc FDH=góc ACE
mà góc ABF=góc ACE
nên góc EDA=góc FDA
=>DA là phân giác của góc EDF

a | Tứ giác có tổng hai góc đối là 180, I là trung điểm AH |
b | Xét tam giác AFH và tam giác AGC |
c | FIE = IHF ( tiếp tuyến trong...) mà IHF = ACG ( 2 góc tư ) . ACG=ABC. (1) Có ABC+ ECB=90 (2) góc ECB=HFG ( tứ giác HFGC nt ) (3) => IFO+HFG=90 |

c: Vì góc B là góc nội tiếp chắn cung nhỏ AC
nên \(sđ\stackrel\frown{AC}=2\cdot\widehat{B}=120^0\)

a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔKAB và ΔKCI có
góc KAB=góc KCI
góc AKB=góc CKI
=>ΔKAB đồng dạng với ΔKCI
=>KA/KC=KB/KI
=>KA*KI=KB*KC
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC(=1/2sd cung AC)
=>góc xAC=góc AFE
=>Ax//EF
=>FE vuông góc AI

a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔKAB và ΔKCI có
góc KAB=góc KCI
góc AKB=góc CKI
=>ΔKAB đồng dạng với ΔKCI
=>KA/KC=KB/KI
=>KA*KI=KB*KC
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC
=>góc xAC=góc AFE
=>Ax//EF
=>FE vuông góc AI

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có
\(\widehat{ABE}=\widehat{HCE}\)
Do đó: ΔABE\(\sim\)ΔHCE
Suy ra: AB/HC=BE/CE
hay \(AB\cdot CE=BE\cdot HC\)
Câu a: Chứng minh tứ giác \(A E H F\) nội tiếp đường tròn
Bước 1: Chứng minh \(\angle A E F + \angle A H F = 180^{\circ}\)
Kết luận: Tứ giác \(A E H F\) nội tiếp.
Câu b: Chứng minh \(D I = D J\)
Bước 1: Sử dụng định nghĩa song song
Bước 2: Chứng minh \(D I = D J\)
Kết luận: \(D I = D J\).