giải hệ PT
{7x-6y=0
{9x+8y=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}9x^2-3xy+2y^2=23\\7x^2+6xy-8y^2=-37\end{matrix}\right.\)\(\left(hpt\right)\)
\(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}9\left(t.y\right)^2-3t.y^2+2y^2=23\left(1\right)\\7\left(ty\right)^2+6t.y^2-8y^2=-37\left(2\right)\end{matrix}\right.\)
\(\Rightarrow-37\left[9\left(t.y\right)^2-3ty^2+2y^2\right]=23\left[7\left(ty\right)^2+6ty^2-8y^2\right]\)
\(\Leftrightarrow494\left(ty\right)^2+27ty^2-110y^2=0\left(3\right)\)
\(x=y=0\) \(không\) \(là\) \(nghiệm\) \(hpt\)
\(y\ne0\Rightarrow\left(3\right)\Leftrightarrow494t^2+27t-110=0\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{110}{247}\Rightarrow x=\dfrac{110}{247}.y\left(4\right)\\t=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{2}.y\left(5\right)\end{matrix}\right.\)
\(thay\left(4\right)và\left(5\right)vào-hpt\Rightarrow x,y=.....\)(đến đây dễ rồi bạn tự tìm x,y)
\(\left\{{}\begin{matrix}5x-6y=17\\9x-y=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x-6\left(9x-7\right)=17\\y=9x-7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x-54x+42=17\\y=9x-7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}-49x=-25\\y=9x-7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{25}{49}\\y=9\left(\frac{25}{49}\right)-7=\frac{-118}{49}\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x,y\right)=\left(\frac{25}{49};\frac{-118}{49}\right)\) .
Hệ PT <=> hệ 2x - 2y -xy2 =0(1) và x2 + 6y2 = 10(2)
Thế x = 2y/(2-y2) vào (2) ta được
6y6 - 34y4 +68y2 -40 = 0 <=> (y2 -1)(6y4 - 28y2 + 40)=0
Dễ thấy 6y4 - 28y2 + 40 >0 nên y2 - 1= 0
Còn lại bạn tự giải nha
a)\(9x^2+5x+2=0\)
\(\Delta=5^2-4\cdot9\cdot2=-47< 0\)
Vô nghiệm
b)\(5x^2+4x-2=0\)
\(\Delta=4^2-4\cdot5\cdot\left(-2\right)=56\)
\(x_{1,2}=\frac{-4\pm\sqrt{56}}{10}\)
c)\(2x^3+7x^2+7x+2=0\)
\(\Rightarrow2x^3+6x^2+4x+x^2+3x+2=0\)
\(\Rightarrow2x\left(x^2+3x+2\right)+\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2+3x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left(x^2+2x+x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[x\left(x+2\right)+\left(x+2\right)\right]\left(2x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
=>x=-1 hoặc x=-2 hoặc \(x=-\frac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x+y=2x^4+8y^4\end{matrix}\right.\)
Nhân vế với vế:
\(\left(2x+y\right)\left(x^3+8y^3-4xy^2\right)=2x^4+8y^4\)
\(\Leftrightarrow12xy^3-8x^2y^2+x^3y=0\)
\(\Leftrightarrow xy\left(12y^2-2xy+x^2\right)=0\)
\(\Leftrightarrow xy=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=...\\y=0\Rightarrow x=...\end{matrix}\right.\)
a: =>3x^2-6x-x+2=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
b: =>x^4-x-4x+4=0
=>x(x-1)(x^2+x+1)-4(x-1)=0
=>(x-1)(x^3+x^2+x-4)=0
=>x-1=0 hoặc x^3+x^2+x-4=0
=>x=1 hoặc x=1,15
Đánh giá giúp mk vs ạ
...