K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3x-2y-4=0\)

=>\(2y=3x-4\)

=>\(y=\dfrac{3x-4}{2}\)

\(2x^2-4xy+2y^2+8x-8y-10=0\)

=>\(2\left(x^2-2xy+y^2\right)+8\left(x-y\right)-10=0\)

=>\(\left(x-y\right)^2+4\left(x-y\right)-5=0\)

=>(x-y+5)(x-y-1)=0

=>\(\left[{}\begin{matrix}x-y+5=0\\x-y-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=x+5\\y=x-1\end{matrix}\right.\)

TH1: y=x+5

=>\(\dfrac{3x-4}{2}=x+5\)

=>3x-4=2(x+5)

=>3x-4=2x+10

=>3x-2x=4+10

=>x=14

Khi x=14 thì y=x+5=14+5=19

TH2: y=x-1

=>\(\dfrac{3x-4}{2}=x-1\)

=>3x-4=2(x-1)

=>3x-4=2x-2

=>3x-2x=-2+4

=>x=2

Khi x=2 thì y=x-1=2-1=1

NV
26 tháng 8 2020

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

27 tháng 2 2018

Phương pháp UCT(hệ số bất định) phần 1 - YouTube

7 tháng 5 2020

\(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(1\right)\\x^2-y^2+2x+y-3=0\left(2\right)\end{cases}}\)

Nhân 2 vế của (2) với 2, ta được hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(3\right)\\2x^2-2y^2+4x+2y-6=0\left(4\right)\end{cases}}\)

Lấy (3) - (4) theo vế, ta có: \(\left(x^2-4xy+4y^2\right)-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-2y=1\\x-2y=2\end{cases}}\)

+) Với x - 2y = 1, thay vào (3) và rút gọn, ta có \(y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)

* Với \(y=0\Rightarrow x=1\)

* Với\(y=-3\Rightarrow x=-5\)

+) Với x - 2y = 2, thay vào (3) và rút gọn, ta có \(3y^2+13y+5=0\)(**)

Giải phương trình (**) thu được hai nghiệm \(\frac{-13+\sqrt{109}}{6}\)và \(\frac{-13-\sqrt{109}}{6}\)

* Với \(y=\frac{-13+\sqrt{109}}{6}\Rightarrow x=\frac{-7+\sqrt{109}}{3}\)

* Với \(y=\frac{-13-\sqrt{109}}{6}\Rightarrow x=\frac{-7-\sqrt{109}}{3}\)

Vậy hệ có 4 nghiệm (x;y) tương ứng là \(\left(1;0\right);\left(-5;-3\right);\)\(\left(\frac{-7+\sqrt{109}}{3};\frac{-13+\sqrt{109}}{6}\right);\)\(\left(\frac{-7-\sqrt{109}}{3};\frac{-13-\sqrt{109}}{6}\right)\)

7 tháng 6 2020

/uc8tfghnm?u..........................hyuuttfd ggrs tdjtrthu a678t=45678/?

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$

Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:

$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow 49y^2+28y+112=t^2$

$\Leftrightarrow (7y+2)^2+108=t^2$

$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$

Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.

 

NV
9 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2y^2-4xy+x+8y-4=0\\2x^2-2y^2+4x+2y-6=0\end{matrix}\right.\)

\(\Rightarrow x^2+4y^2-4xy-3x+6y+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=2\end{matrix}\right.\)

9 tháng 2 2020

mk cảm ơn rất rất nhiều nhé

23 tháng 1 2018

ai giúp vs

28 tháng 12 2019

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

9 tháng 9 2017

+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.

+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :

a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0

⇒ phương trình trên là phương trình đường tròn.

+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :

a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0

⇒ phương trình trên không là phương trình đường tròn.

+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :

a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0

⇒ phương trình trên không là phương trình đường tròn.