x/6-2/y=1/30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=30\\x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\x+y=6\end{matrix}\right.\)
Thep Viet đảo, x và y là nghiệm:
\(t^2-6t+3=0\Rightarrow\left[{}\begin{matrix}t=3+\sqrt{6}\\t=3-\sqrt{6}\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(3+\sqrt{6};3-\sqrt{6}\right);\left(3-\sqrt{6};3+\sqrt{6}\right)\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x+2}-\frac{1}{\left(x+6\right)}\)
\(\frac{1}{t}-\frac{1}{t+4}=\frac{4}{t\left(t+4\right)}=\frac{1}{8}=\frac{4}{32}\Rightarrow t=4\Rightarrow x=2\)

Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)


\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{1}{y}=2\\\dfrac{6}{x}-\dfrac{2}{y}=1\end{matrix}\right.\)
\(TC:\)
\(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=2\\6a-2b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\6a-2b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\10b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\b=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
\(\begin{cases} \dfrac{2}{x} + \dfrac{1}{y} = 2 \\ \dfrac{6}{x} - \dfrac{2}{y} = 1 \\\end{cases} (ĐK: x;y \neq 0)\)
Đặt \(\dfrac{1}{x} = u \) và \(\dfrac{1}{y} = v\) (\(u;v\neq 0\)) thì hệ đã cho trở thành
\(\begin{cases} 2u + v = 2 \\ 6u - 2v = 1 \\\end{cases}\) \(<=> \begin{cases} 4u + 2v = 4 \\ 6u - 2v = 1 \\\end{cases} <=> \begin{cases} 10u = 5 \\ 2u + v = 2 \\\end{cases} <=> \begin{cases} u = \dfrac{1}{2} \\ 2 .\dfrac{1}{2} + v = 2 \\\end{cases} <=> \begin{cases} u = \dfrac{1}{2} \\ v = 1 \\\end{cases} (T/m)\)
=> \(\begin{cases} \dfrac{1}{x} = \dfrac{1}{2} \\ \dfrac{1}{y} = \dfrac{1}{1} \\\end{cases} <=> \begin{cases} x= 2 \\ y = 1 \\\end{cases} (T/m)\)

\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)
\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)
Ta thấy 2 vế đều dương nên bình phương lên ta được:
\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)
\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))


Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
\(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\)
=>\(\dfrac{x}{6}-\dfrac{1}{30}=\dfrac{2}{y}\)
=>\(\dfrac{5x-1}{30}=\dfrac{2}{y}\)
=>\(y\left(5x-1\right)=30\cdot2=60\)
=>(5x-1;y)\(\in\){(1;60);(60;1);(-1;-60);(-60;-1);(2;30);(30;2);(-2;-30);(-30;-1);(3;20);(-3;-20);(20;3);(-20;-3);(4;15);(15;4);(-4;-15);(-15;-4);(5;12);(12;5);(-5;-12);(-12;-5);(6;10);(10;6);(-10;-6);(-6;-10)}
=>(x;y)\(\in\){(2/5;60);(61/5;1);(0;-60);(-59/5;-1);(3/5;30);(31/5;2);(-1/5;-30);(-29/5;-1);(4/5;20);(-2/5;-20);(21/5;3);(-19/5;-3);(1;15);(16/5;4);(-3/5;-15);(-14/5;-4);(6/5;12);(13/5;5);(-4/5;-12);(-11/5;-5);(7/5;10);(11/5;6);(-9/5;-6);(-1;-10)}