K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là một hệ phương trình tuyến tính hai ẩn. Dưới đây là cách giải hệ phương trình:

Phương pháp thế

  1. Giải phương trình thứ nhất để tìm y:
    • 3x - y = 5
    • -y = 5 - 3x
    • y = 3x - 5
  2. Thay giá trị của y vào phương trình thứ hai:
    • -x + 2y = 10
    • -x + 2(3x - 5) = 10
    • -x + 6x - 10 = 10
    • 5x = 20
    • x = 4
  3. Thay giá trị của x vào phương trình y = 3x - 5 để tìm y:
    • y = 3(4) - 5
    • y = 12 - 5
    • y = 7

Vậy nghiệm của hệ phương trình là x = 4 và y = 7.

Phương pháp cộng đại số

  1. Nhân phương trình thứ hai với 3:
    • 3(-x + 2y) = 3(10)
    • -3x + 6y = 30
  2. Cộng phương trình mới với phương trình thứ nhất:
    • (3x - y) + (-3x + 6y) = 5 + 30
    • 5y = 35
    • y = 7
  3. Thay giá trị của y vào một trong hai phương trình ban đầu để tìm x:
    • 3x - 7 = 5
    • 3x = 12
    • x = 4

Vậy nghiệm của hệ phương trình là x = 4 và y = 7.

Kết luận

Hệ phương trình có nghiệm duy nhất là x = 4 và y = 7. Bạn có thể kiểm tra lại bằng cách thay x và y vào hai phương trình ban đầu, nếu cả 2 phương trình đều đúng thì kết quả là chính xác.

26 tháng 2

@H.quân nah kệ nó, nó chép AI mà=).

30 tháng 1 2021

\(\left\{{}\begin{matrix}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{matrix}\right.\)

Từ (1) ta có \(z=11-x-y\)

Thay vào (2) và (3) ta được hệ phương trình:

\(\left\{{}\begin{matrix}2x-y+11-x-y=5\\3x+2y+11-x-y=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-6\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-6\\4x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-6\\5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{x+6}{2}\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\Rightarrow z=11-0-3=8\)

Vậy nghiệm của hệ phương trình là \(\left(x;y;z\right)=\left(0;3;8\right)\).

30 tháng 3 2020

\(\hept{\begin{cases}xy+3=3x+y\\x^2+2y^2+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-3\right)=0\\x^2+2y^2+y=1\left(2\right)\end{cases}}\)

Xét: x=1

\(\Rightarrow\left(2\right)\Leftrightarrow2y^2+y=0\Leftrightarrow\hept{\begin{cases}y=0\\y=-\frac{1}{2}\end{cases}}\)

Xét: y=3

\(\Rightarrow\left(2\right)\Leftrightarrow x^2+2.3^2+3>0\)=> vô nghiệm.

KL:.....

a: 3(x+7)-2x+5>0

=>3x+21-2x+5>0

=>x+26>0

=>x>-26

Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)

=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)

=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)

=>\(4x+8-9x-27< 8x-8-3x+12\)

=>-5x-19<5x+4

=>-10x<23

=>\(x>-\dfrac{23}{10}\)

b: \(3x+2+\left|x+5\right|=0\left(1\right)\)

TH1: x>=-5

(1) trở thành: 3x+2+x+5=0

=>4x+7=0

=>\(x=-\dfrac{7}{4}\left(nhận\right)\)

TH2: x<-5

=>x+5<0

=>|x+5|=-x-5

Phương trình (1) sẽ trở thành:

\(3x+2-x-5=0\)

=>2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

12 tháng 5 2022

\(\dfrac{3x+4}{7}\le\dfrac{5x-19}{14}\)

\(\Leftrightarrow\dfrac{6x+8}{14}\le\dfrac{5x-19}{14}\)

\(\Leftrightarrow6x+8\le5x-19\)

\(\Leftrightarrow6x-5x\le-19-8\)

\(\Leftrightarrow x\le-27\)

 

 

 

12 tháng 5 2022

\(\dfrac{3x+4}{7}\le\dfrac{5x-19}{14}\)

\(\Leftrightarrow\dfrac{2\left(3x+4\right)}{14}\le\dfrac{5x-19}{14}\)

\(\Leftrightarrow2\left(3x+4\right)\le5x-19\)

\(\Leftrightarrow6x+8\le5x-19\)

\(\Leftrightarrow x\le-27\)

Vậy \(S=\left\{x|x\le-27\right\}\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix} 5a+3b=8\\ 20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 20a+12b=32\\ 20a-7b=-6\end{matrix}\right.\)

\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)

Ta có:

\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)

\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)

Kéo theo $x=3$

Vậy $(x,y)=(3,1)$

1 tháng 9 2020

, xy*(x+y)-2x-2y tại x+y=10

->10xy-2(x+y)=10xy-20=120-20=80

b, x^5(x+2y)-x^3y*(x+2y)+x^2y^2*x+2y=(x+2y)(x^5-x^3y+x^2y^2)

Bạn tự thay vảo nhá

1 tháng 9 2020

Vg ạ. Mình cảm ơn nhiều

4 tháng 7 2024

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

20 tháng 9 2021

a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)