Tìm chữ số a và số x biết (6x - 15)² =20a5
GIÚP MK VỚI !HELP MEEEE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy - 6x + y = 15
<=> 2x(y - 3) + y - 3 = 12
<=> (2x + 1)(y - 3) = 12 (1)
Từ (1) \(\Rightarrow2x+1\inƯ\left(12\right)\)
Mà 2x + 1 là số lẻ \(\forall x\inℕ\)
=> \(2x+1\in\left\{1;3\right\}\Leftrightarrow x\in\left\{0;1\right\}\)
với x = 0 => y = 15
với x = 1 => y = 7
Vậy (x;y) = (0;15) ; (1;7)
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
\(\hept{\begin{cases}x⋮18\\x⋮15\\x⋮12\end{cases}}\Leftrightarrow x⋮BCNN\left(18,15,12\right)\)
Ta có: \(18=2.3^2,15=3.5,12=2^2.3\Rightarrow BCNN\left(18,15,12\right)=2^2.3^2.5=180\).
\(x⋮180\Rightarrow x\in B\left(180\right)\)mà \(200\le x\le500\Rightarrow x=360\).
ta có 2x = 3y => 2x/3 = y
2x=4z => 2x/4 = z => x/2 = z
thay vào 2x - y + z = 15
2x - 2x/3 + x/2 =15
x(2-2/3+1/2) = 15
11x/6 = 15
11x= 90
x=90/11
y=60/11
z=45/11
Từ \(2x=3y=4z\) \(\Rightarrow\hept{\begin{cases}2x=3y\\3y=4z\end{cases}}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{4}=\frac{y}{2}.\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}\)( 1 )
Từ \(3y=4z\)\(\Rightarrow\)\(\frac{y}{4}=\frac{z}{3}=\frac{y}{4}.\frac{1}{2}=\frac{z}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{8}=\frac{z}{6}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}=\frac{2x}{24}=\frac{y}{8}=\frac{z}{6}=\frac{2x-y+z}{24-8+6}=\frac{15}{22}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{15}{22}\\\frac{y}{8}=\frac{15}{22}\\\frac{z}{6}=\frac{15}{22}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}22x=180\\22y=120\\22z=90\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{90}{11}\\y=\frac{60}{11}\\z=\frac{45}{11}\end{cases}}\)
Các