Tìm các số nguyên dương n sao cho 2^n + 12^n +2011^n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........


Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!

Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)
Vậy \(n=4\) thì \(n^2+2n+12\) là SCP

Đặt
\(a^2=n^2-n+2\)
Ta có:
\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)
\(\Rightarrow n^2-n+2=n^2\)
\(\Leftrightarrow n=2\)

TH1: n=1n=1 ⇒⇒ 2n+12n+2011n=2025=4522n+12n+2011n=2025=452 ⇒⇒ Thỏa mãn
Ta có: 12 ⋮ 312 ⋮ 3 ⇒⇒ 12n ⋮ 3 ∀ n∈N∗12n ⋮ 3 ∀ n∈ℕ∗
Ta có: 20112011 chia 33 dư 11 ⇒⇒ 2011n2011n chia 33 dư 11 với mọi n∈N∗n∈ℕ∗
TH2: nn chẵn ⇒⇒ 2n2n chia 33 dư 11
⇒⇒ 2n+12n+2011n2n+12n+2011n chia 33 dư 22
Mà một số chính phương không bao giờ chia 33 dư 22
⇒⇒ Loại
TH3: nn lẻ và n>1n>1 ⇒⇒ nn chia 44 dư 33 hoặc nn chia 44 dư 11
+)+) Với nn chia 44 dư 11 và n>1n>1
⇒⇒ 2n2n và 12n12n đều chia 55 dư 11
Thêm vào đó, 2011n2011n cũng chia 55 dư 11
⇒⇒ 2n+12n+2011n2n+12n+2011n chia 55 dư 33
Mà một số chính phương không bao giờ chia 55 dư 33
⇒⇒ Loại
+)+) Với nn chia 44 dư 33
⇒⇒ 2n2n và 12n12n đều có chữ số tận cùng là 88
Thêm vào đó, 2011n2011n luôn có chữ số tận cùng là 11
⇒⇒ 2n+12n+2011n2n+12n+2011n có chữ số tận cùng là 77
Mà một số chính phương không bao giờ tận cùng là 77
⇒⇒ Loại
Vậy n=1n=1 thỏa mãn đề bài