Phân tích đa thức thành nhân tử : x10+x5+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x^10+x^5+1
=x10-x+x5-x2+x2+x+1
=x.(x9-1)+x2.(x3-1)+(x2+x+1)
=x.(x3-1)(x3+1)+x2(x3-1)+(x2-x+1)
=x.(x-1)(x2+x+1)(x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+x2(x-1)+1]
=(x2+x+1)(x5+x2-x4-x+x3-x2+1)
=(x2+x+1)(x5-x4+x3-x+1)
x^10+x^5+1
=x10-x+x5-x2+x2-x+1
=x.(x9-1)+x2.(x3-1)+(x2+x+1)
=x.(x3-1)(x3+1)+x2(x3-1)+(x2-x+1)
=x.(x-1)(x2+x+1)(x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+x2(x-1)+1]
=(x2+x+1)(x5+x2-x4-x+x3-x2+1)
=(x2+x+1)(x5-x4+x3-x+1)
\(x^{10}+x^5+1\)
\(=x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)
= x^10 - x + x^5 - x^2 + x^2 + x + 1
= x ( x^9 - 1 ) + x^2 (x^3 - 1 ) + x^2 + x + 1
= x [ ( x^3 - 1) ( x^6 + x^3 + 1 )] + x^2 ( x - 1 )(x^2 + x + 1 ) + x^2 + x + 1
= x ( x - 1 )(x^2 + x + 1 )(x^6 + x^3 + 1) + x^2 (x-1 )(x^2 + x+ 1 ) + x^2 + x + 1
= (x^2 + x + 1 )[ x(x-1)(x^6 + x^3 + 1 ) + x^2 + 1 )
Nhân ra giúp mình nha
\(x^{10}+x^2+1\)
\(=x^{10}-x^8+x^4+x^8-x^6+x^2+x^6-x^4+1\)
\(=x^4\left(x^6-x^4+1\right)+x^2\left(x^6-x^4+1\right)+\left(x^6-x^4+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left[x^4+2x^2+1-x^2\right]\)
\(=\left(x^6-x^4+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
\(=\left(x^6-x^4+1\right)\left(x^2+1+x\right)\left(x^2+1-x\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
x10 + x5 + 1 = (x10 - x) + (x5 - x2) + (x2 + x + 1) = x.[(x3)3 - 1] + x2.(x3 - 1) + (x2 + x + 1)
= x.(x3 - 1).(x6 + x3 + 1) + x2.(x3 - 1) + (x2 + x + 1)
= (x2 + x + 1). [x.(x -1).(x6 + x3 + 1) + x2 + 1 ]