giúp mik với đc ko
tìm tất cả các số nguyên n để phân số sau là phân số tối giản
2n-9/n-1
n^2-n-7/n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi $d=ƯCLN(n+15,n+2)$
$\Rightarrow n+15\vdots d; n+2\vdots d$
$\Rightarrow (n+15)-(n+2)\vdots d$
$\Rightarrow 13\vdots d$
$\Rightarrow d=1$ hoặc $d=13$.
Để ps đã cho tối giản thì $d\neq 13$
$\Leftrightarrow n+2\not\vdots 13$
$\Leftrightarrow n\neq 13k-2$ với $k$ nguyên.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi $d=ƯCLN(n+19, n-2)$
$\Rightarrow n+19\vdots d; n-2\vdots d$
$\Rightarrow (n+19)-(n-2)\vdots d$
$\Rightarrow 21\vdots d$
Để phân số đã cho tối giản, thì $(21,d)=1$, hay $(3,d)=(7,d)=1$
Để $(d,3)=1$ thì $n-2\not\vdots 3$
$\Rightarrow n\neq 3k+2$
Để $(d,7)=1$ thì $n-2\not\vdots 7$
$\Rightarrow n\neq 7m+2$
Vây $n$ không chia 3 dư 2 và không chia 7 dư 2 thì phân số trên tối giản.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta sẽ tìm \(n\)để \(\frac{n+19}{n-2}\)không là phân số tối giản.
\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)không tối giản suy ra \(\frac{21}{n-2}\)không tối giản
Suy ra \(n-2\inƯ\left(21\right)=\left\{-21,-7,-3,-1,1,3,7,21\right\}\)
\(\Rightarrow n\in\left\{-19,-5,-1,1,3,5,9,23\right\}\).
Vậy \(n\notin\left\{-19,-5,-1,1,3,5,9,23\right\}\)thì \(\frac{n+19}{n-2}\)là phân số tối giản.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ƯCLN ( 12n+1,30n+2 ) = d
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left[\left(60n+5\right)-60n-4\right]\)\(⋮d\)
\(\Rightarrow\)1\(⋮d\)
\(\Rightarrow\)d = 1
Vậy phân số\(\frac{12n+1}{30n+2}\)tối giản với mọi n
Đặt \(12n+1;30n+2=d\)
\(12n+1⋮d\Rightarrow60n+5⋮d\)
\(30n+2\Rightarrow60n+4⋮d\)
Suy ra : \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ƯCLN(18n + 3) và (21n + 7) là d
Ta có : 18n + 3 chia hết cho d \(\Rightarrow\)3n + 4 chia hết cho d \(\Rightarrow\) 21n + 28
Ta có : 21n + 28 - 21n + 7 \(\Rightarrow\) 21 chia hết cho d
\(\Rightarrow\) d \(\in\) { 3 ; 7 ;21 }
\(\Rightarrow\) n khác 7a +1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ƯCLN (18n+3) và (21n+7) là d
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28
Ta có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21)
=>n khác 7a+1
A = \(\frac{2n-9}{n-1}\) (đk n ≠ 1)
Gọi ước chung lớn nhất của (2n - 9) và (n - 1) là d
Khi đó ta có: \(\begin{cases}\left(2n-9\right)\vdots d\\ \left(n-1\right)\vdots d\end{cases}\) ⇒ \(\begin{cases}\left(2n-9\right)\vdots d\\ 2\left(n-1\right)\vdots d\end{cases}\)
[2n - 9 -2 n + 2] ⋮ d
[(2n - 2n) - (9 - 2)] ⋮ d
7 ⋮ d
Nếu d = 7 thì phân số trên không phải là phân số tối giản.
Với d = 7 ta có: (n - 1) ⋮ d ⇒ n - 1 = 7k (k ∈ Z; k ≠ 0)
⇒ n = 7k + 1
Để phân số tối giản thì n ≠ 7 Vậy:
Phân số đã cho là tối giản khi và chỉ khi n có dạng:
n ≠ 7k + 1 (0 ≠ k ∈ Z)