Cho HCN ABCD. Kẻ BK vuông góc với AC. Lấy M,N lần lượt là trung điểm của AK,DC. Kẻ CI vuông góc với BM (I thuộc BM) và CI cắt BK tại E
a) CM E là trực tâm của tam giác MBC và EB=EK
Giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Xét △BCM: \(\left\{{}\begin{matrix}CI\perp MB\\BK\perp MC\\CI\cap BK=E\end{matrix}\right.\)
Suy ra E là trực tâm của △BCM
\(\Rightarrow ME\perp BC\)
b) Theo kết quả của câu a: \(ME\perp BC\)
Mà \(AB\perp BC\) (Vì ABCD là hình chữ nhật)
=> ME//AB
Lại có M là trung điểm AK
=> E là trung điểm BK
=> ME là đường trung bình của △AKB
\(\Rightarrow\left\{{}\begin{matrix}ME//AB\\ME=\dfrac{1}{2}AB\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ME//NC\\ME=NC\end{matrix}\right.\)
=> MNCE là hình bình hành
=> Đpcm

a:
b: Xét ΔBMC có
BK,CI là các đường cao
BK cắt CI tại E
Do đó: E là trực tâm của ΔBMC
=>ME\(\perp\)BC
mà AB\(\perp\)BC
nên ME//AB
Xét ΔKAB có
M là trung điểm của KA
ME//AB
Do đó: E là trung điểm của BK
=>BE=EK
c: Xét ΔKAB có
M,E lần lượt là trung điểm của KA,KB
=>ME là đường trung bình của ΔKAB
=>\(ME=\dfrac{AB}{2}\)
mà AB=CD(ABCD là hình chữ nhật)
và \(NC=\dfrac{CD}{2}\)(N là trung điểm của CD)
nên ME=NC
Ta có: ME//AB
CD//AB
Do đó: ME//CD
Xét tứ giác MNCE có
ME//CN
ME=CN
Do đó: MNCE là hình bình hành
d: ta có: MNCE là hình bình hành
=>MN//CE
mà CE\(\perp\)MB
nên MN\(\perp\)MB

Chọn B.
Xét đáp án B
Đặt và BA = a; BC = b và BK = c.
Do M là trung điểm của AK nên ,
Do đó
Vì và
nên
Suy ra MN và BM vuông góc với nhau
Do đó góc BMN bằng 900.

Xét ΔBNC có
CI,BK là đường cao
CI cắt BK tại E
Do đó: E là trực tâm của ΔBNC
=>NE\(\perp\)BC
mà AB\(\perp\) BC
nên NE//AB
Xét ΔKAB có
N là trung điểm của KA
NE//AB
Do đó; E là trung điểm của BK
=>EB=EK
a: Xét ΔBMC có
CI,BK là các đường cao
CI cắt BK tại E
Do đó: E là trực tâm của ΔBMC
=>ME\(\perp\)BC
mà BC\(\perp\)AB
nên ME//AB
Xét ΔKAB có
M là trung điểm của KA
ME//AB
Do đó: E là trung điểm của BK
=>EB=EK