K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

b: \(8M=\dfrac{2^{24}+24}{2^{24}-6}=\dfrac{2^{24}-6+30}{2^{24}-6}=1+\dfrac{30}{2^{24}-6}\)

\(8N=\dfrac{2^{27}+24}{2^{27}-6}=1+\dfrac{30}{2^{27}-6}\)

\(2^{24}-6< 2^{27}-6\)

=>\(\dfrac{30}{2^{24}-6}>\dfrac{30}{2^{27}-6}\)

=>\(\dfrac{30}{2^{24}-6}+1>\dfrac{30}{2^{27}-6}+1\)

=>8M>8N

=>M>N

8 tháng 2

Để so sánh a và b, trước tiên ta cần tính các giá trị của a, b, M và N. Tính a: a = 5 2022 + 1 5 2024 + 1 a=5 2022 + 5 2024 1 ​ +1 Có thể viết lại: a = 5 2022 + 1 + 1 5 2024 = 5 2022 + 1 + 1 5 2022 ⋅ 5 2 = 5 2022 + 1 + 1 25 ⋅ 5 2022 = 5 2022 + 1 + 1 25 ⋅ 5 2022 a=5 2022 +1+ 5 2024 1 ​ =5 2022 +1+ 5 2022 ⋅5 2 1 ​ =5 2022 +1+ 25⋅5 2022 1 ​ =5 2022 +1+ 25⋅5 2022 1 ​ Tính F: F = 5 2024 + 1 5 2026 − 4 F=5 2024 + 5 2026 1 ​ −4 Có thể viết lại: F = 5 2024 − 4 + 1 5 2026 = 5 2024 − 4 + 1 5 2024 ⋅ 5 2 = 5 2024 − 4 + 1 25 ⋅ 5 2024 F=5 2024 −4+ 5 2026 1 ​ =5 2024 −4+ 5 2024 ⋅5 2 1 ​ =5 2024 −4+ 25⋅5 2024 1 ​ Tính M và N: M = 2 21 + 3 2 24 − 6 M=2 21 + 2 24 3 ​ −6 N = 2 24 + 3 2 27 − 6 N=2 24 + 2 27 3 ​ −6 So sánh a với b, M, N: So sánh giữa a và b cần tính toán và so sánh giá trị cụ thể của các biểu thức trên. Giá trị chính xác của các biểu thức sẽ quyết định mối quan hệ giữa a, b, M và N. Tóm lại, bạn cần tính và so sánh từng giá trị để đưa ra kết luận. Đề bài yêu cầu so sánh a với b, M và N nhưng không có các phép tính cụ thể cho mỗi biểu thức đó. Hãy thực hiện các phép tính để đưa ra so sánh cụ thể hơn.

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ

7 tháng 9 2023

1) Ta thấy:

\(4=1+3=1+\sqrt{9}\)

\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)

Mà: \(\sqrt{8}< \sqrt{9}\)

\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)

\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)

\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)

2) Ta thấy:

\(2018< 2024\)

\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)

\(2025< 2026\)

\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)

Từ (1) và (2) ta có:

\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

10 tháng 10 2023

loading...  loading...  loading...  

24 tháng 12 2024

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`

`= 3020 xx 3109 + 3015 = B`.

`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`

7 tháng 10 2021

a) 2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029

= (2021 + 2029) + (2022 + 2028) + (2023 + 2027) + (2024 + 2026) + 2025

= 4050 + 4050 + 4050 + 4050 + 2025

= 4050.4 + 2025

= 16 200 + 2025 

= 18 225

7 tháng 10 2021

b)

30.40.50.60 = 3.10.4.10.5.10.6.10 = 3.4.5.6.10000 = 3.20.6.10000 = 3.2.6.10.10000 = 36.100000 = 3600000

3 tháng 5 2018

2020+2022/2022+2024 lớn hơn

3 tháng 5 2018

lm sao hở c ?

12 tháng 6 2023

giúp em với

26 tháng 9 2023

\(A=\dfrac{10^{2024}+1}{10^{2023}+1}=\dfrac{10\left(10^{2023}+1\right)}{10^{2023}+1}-\dfrac{9}{10^{2023}+1}=1-\dfrac{9}{10^{2023}+1}\)

\(B=\dfrac{10^{2023}+1}{10^{2022}+1}=\dfrac{10\left(10^{2022}+1\right)}{10^{2022}+1}-\dfrac{9}{10^{2022}+1}=1-\dfrac{9}{10^{2022}+1}\)

Vì \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)

\(\Rightarrow A>B\)

7 tháng 11 2024

nhầm rồi bạn hiếu ơi