Thu gọn và sắp xếp các hạng tử của các đa thức sau theo lũy thừa giảm dần của biến. Chỉ ra bậc, hệ số cao nhất, hệ số tự do của mỗi đa thức đó. a) A(x) = x ^ 3 + 3x ^ 2 - 5x - 2x ^ 2 + 5x ^ 3 + x ^ 4 - 2x + 1 b) B(x) = - x ^ 6 + 2x ^ 3 + 6 - 2x ^ 4 + x ^ 6 - x - 5 + 2x ^ 4 + x ^ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)

a, \(P(x)=3x^4+x^2-3x^4+5\\ = (3x^4-3x^4)+x^2+5\\ = x^2+5\)
b, \(P(0)=0^2+5=5\\ P(-3)=(-3)^2+5=-9+5=-4\)
c, Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5
Hay P(x) > 5
Vậy P(x) không có nghiệm

P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5
P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5
P(x) = 2 + 9x2 – 4x3– 2x + 6x5
Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2

Trả lời câu hỏi của tôi đi. Tí tôi trả lời của bạn chings xác 100% luôn. UY TÍN BẠN NHÉ

`P(x)=x ^ 5 + 2x ^ 2 - x ^ 2 - 2x ^ 3 - x ^ 5 + x ^ 4 - 3x + 1`
`P(x)= (x^5-x^5)+x^4-2x^3+(2x^2-x^2)-3x+1`
`P(x)=x^4+2x^3+x^2-3x+1`
`Q(x)=`\(-x^6+2x^3+6-2x^4+x^6-x-1+2x^4\)
`Q(x)= (-x^6+x^6)+(-2x^4+2x^4)+2x^3-x+(6-1)`
`Q(x)=2x^3-x+5`
a: \(A\left(x\right)=x^3+3x^2-5x-2x^2+5x^3+x^4-2x+1\)
\(=x^4+\left(x^3+5x^3\right)+\left(3x^2-2x^2\right)+\left(-5x-2x\right)+1\)
\(=x^4+6x^3+x^2-7x+1\)
Bậc là 4
Hệ số cao nhất là 1
Hệ số tự do là 1
b: \(B\left(x\right)=-x^6+2x^3+6-2x^4+x^6-x-5+2x^4+x^3\)
\(=\left(-x^6+x^6\right)+\left(-2x^4+2x^4\right)+\left(2x^3+x^3\right)+\left(-x\right)+\left(6-5\right)\)
\(=3x^3-x+1\)
Bậc là 3
Hệ số cao nhất là 3
Hệ số tự do là 1