Cho S = 3^1 + 3^3 + 3^5 + ... + 3^2011 + 3^2013 + 3^2015 . Chứng tỏ S chia hết cho 70 .
LẸ LÊN Ạ , THANKS ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{299}+3^{300}\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^{299}\right)\\ S=4\left(1+3^2+...+3^{299}\right)⋮4\)
a,S=1+3+32+...+360
3S=3+32+33+...+361
3S-S=(3+32+33+...+361)-(1+3+32+...+360)
2S = 361 - 1
b,2S+1=361-1+1=361 = 3x-3
=>x-3=61=>x=64
c, S=1+3+32+...+360
=(1+3)+(32+33)+...+(359+360)
=4+32(1+3)+...+359(1+3)
=4+32.4+...+359.4
=4(1+32+...+359) chia hết cho 4
S=1+3+32+...+360
=(1+3+32)+....+(358+359+360)
=13+...+358(1+3+32)
=13+...+358.13
=13(1+...+358)
Ta có: \(S=3+3^3+3^5+...+3^{2011}+3^{2013}+3^{2015}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{2011}+3^{2013}+3^{2015}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2011}\left(1+3^2+3^4\right)\)
\(=91\left(3+3^7+...+3^{2011}\right)⋮7\)
Ta có: \(S=3+3^3+3^5+3^7+...+3^{2015}\)
\(=\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{2013}+3^{2015}\right)\)
\(=3\left(1+3^2\right)+3^5\left(1+3^2\right)+...+3^{2013}\left(1+3^2\right)\)
\(=10\left(3+3^5+...+3^{2013}\right)⋮10\)
Ta có: \(S⋮7;S⋮10\)
mà ƯCLN(7;10)=1
nên \(S⋮\left(7\cdot10\right)\)
hay \(S⋮70\)