Giá trị nguyên lớn nhất của \(n\) để \(\frac{-7}{n-2}\) đạt giá trị nguyên là . . .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
D=(n+1)/(n-2)=n-2-1/n-2 =n-2/n-2 + 1/n-2 =1+1/n-2
Để D lớn nhất thì D' =1/n-2
Khi n-2<0 suy ra d'<0
Khi n-2>0 suy ra d'>o
Để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3 và khi n=3 thì max D=3+1/3-2=4
\(D=\frac{3}{n-2}+1\)
Để D lớn nhất thì \(\frac{3}{n-2}\)lớn nhất tức n-2 nhỏ nhất và n-2 dương
Do n nguyên nên GTNN của n-2 là 1, n=3
Vậy GTLN của D=\(\frac{3+1}{3-2}=4\)
a) P lớn nhất => P >0
cần 6-m nhỏ nhất lớn hơn 0
m nguyên => m=5
Pmax=2
b)
Q đạt nhỏ nhất => Q<0
\(Q=\frac{5-\left(n-3\right)}{n-3}=-1+\frac{5}{n-3}\)
\(\frac{5}{n-3}\) đạt giá trị (-) nhỏ nhất=> n=2
Qmin=-1-5=-6
D=(n+1)/(n-2)=n-2-1/n-2
=n-2/n-2 + 1/n-2
=1+1/n-2
để D lớn nhất thì D' =1/n-2
khi n-2<0 suy ra d'<0
khi n-2>0 suy ra d'>o
để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.
n-2=1=>n=3
và khi n=3 thì max D=3+1/3-2=4
P=\(\frac{n+2}{n-7}\)=\(\frac{\left(n-7\right)+7+2}{n-7}\)= 1+\(\frac{9}{n-7}\)
-Nếu n = 7 thì P không tồn tại
-Nếu n > 7 => n - 7 > 0 =>\(\frac{9}{n-7}\)> 0 => P > 1
-Nếu n < 7 => n - 7 < 0 => \(\frac{9}{n-7}\)< 0 => P < 1
Do đó ta chọn giá trị lớn nhất của P khi n > 7
Mà n \(\varepsilon\)Z => n - 7 \(\varepsilon\)Z và n - 7 > 0
=> n - 7 là số nguyên dương lớn nhất
=> n - 7 = 1
=> n = 7 + 1
=> n = 8
-Thay n = 8 vào P ta có :
P = \(\frac{8+2}{8-7}\)= \(\frac{10}{1}\)= 10
Vậy với giá trị nguyên n = 8 thi P đạt giá trị lớn nhất là 10
Baif 2:a:
Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2
A=1+3/n-2
=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2
=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)
<=>n thuoc (1;3;-1;5)
b;
Co:A=1+3/n-2
Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat
<=>n-2=1<=>n=3
Khi do A=1+3/3-2=4
Vay GTLN cua A=4 tai n=3
Để \(\frac{-7}{n-2}\) nguyên thì \(-7\vdots n-2\)
\(n-2\inƯ\left(-7\right)={{\left\lbrace\pm1;\pm7\right\rbrace}}\)
\(\begin{cases}n-2=1\to n=3\\ n-2=7\to n=9\\ n-2=-1\to n=1\\ n-2=-7\to n=-5\end{cases}\)
Vậy giá trị lớn nhất của n để \(\frac{-7}{n-2}\) nguyên là 9.
Đặt `A = (-7)/(n-2)`
Để `A` nguyên
`<=> -7 ⋮ n-2`
`<=> n-2 ∈ Ư(-7)`
`=> n-2 ∈{-1 ; -7; 1 ;7}`
`=> n-2 ∈{1 ; -5 ; 3 ; 9}`
VÌ đề thì `x` lớn nhất để `A` nguyên
`=> x = 9`
Vậy giá trị của `x` lớn nhất để `A` nguyên là `x = 9`