Gấp ah
Tính
3/4 + 3/28 + 3/70 + 3/130 +...+3/y = 33/34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
\(\Rightarrow B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\)
\(\Rightarrow B=1-\frac{1}{19}=\frac{18}{19}\)
Vậy \(B=\frac{18}{19}\)
Chúc bn học tốt
B = \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{13}-\frac{1}{16}\)
= \(1-\frac{1}{16}\)
= \(\frac{15}{16}\)
Ta có:
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}\)
\(=\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+\frac{3}{10\times13}+\frac{3}{13\times16}\)
\(=\frac{4-1}{1\times4}+\frac{7-4}{4\times7}+\frac{10-7}{7\times10}+\frac{13-10}{10\times13}+\frac{16-13}{13\times16}\) \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
Chắc chắn đúng nhé !
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+....+\frac{3}{304}.\)
\(=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{16.19}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{13-10}{10.13}+.....+\frac{19-16}{16.19}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{16}-\frac{1}{19}\)
\(=1-\frac{1}{19}=\frac{18}{19}\)
3/4+3/28+3/70+3/130+...+3/304
= 3 /1.4 + 3/4.7 + 3/7.10 + 3/10.13 +....+ 3 /16.19
= 1 -1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ...+1/16 - 1/19
= 1 - 1/19
=18/19
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\\ =\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\\ =1-\dfrac{1}{19}=\dfrac{18}{19}\)
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\)
\(=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16}+\dfrac{3}{16\times19}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\)
\(=1-\dfrac{1}{19}\)
=\(\dfrac{18}{19}\)
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+...+\frac{3}{10300}\)
\(=\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{100\times103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}=\frac{102}{103}\)
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+....+\frac{3}{418}+\frac{3}{550}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{19.22}+\frac{3}{22.25}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
Nhớ k cho m nhé!
A=\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
A= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
A= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
A= 1 - \(\frac{1}{19}\)
A= \(\frac{18}{19}\)
X=3/4+3/28+...+3/304
X=3/1x4+3/4x7+....+3/13x16
X=1-1/4+1/4-1/7+....+1/13-1/16
X=1-1/16
X=15/16
k cho tớ nha Nguyễn Thu Trang
\(\frac34+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\ldots+\frac{3}{y}=\frac{33}{34}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\cdots+\frac{3}{y}=\frac{33}{44}\)
\(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{13-10}{10.13}+\cdots+\frac{3}{y}=\frac{33}{34}\)
\(1-\frac14+\frac14-\frac17+\frac17-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\cdots+\frac{3}{y}=\frac{33}{34}\)
\(1+\frac{3}{y}=\frac{33}{34}\)
\(\frac{3}{y}=\frac{33}{34}-1\)
\(\frac{3}{y}=\frac{-1}{34}\) \(\Rightarrow y=\frac{3.34}{-1}\)
\(y=-102\)
Vậy \(y=-102\)
`3/4 + 3/28 + 3/70 + 3/130 + ... +3/y = 33/34`
`=> 3/(1*4) + 3/(4*7) + 3/(7*10) + 3/(10*13) + ... + 3/y = 33/34`
`=> 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + .... + 3/y = 33/34`
`=> 1 + 3/y = 33/34`
`=> 3/y = 33/34 - 1`
`=> 3/y = 33/34 - 34/34`
`=> 3/y = -1/34`
`=> 3 : y = -1/34`
`=> y = 3: -1/34`
`=> y = 3 xx -34`
`=> y = -102`
Vậy `y = -102`