tìm 2 STN a,b sao cho [3a+2b][7a+3b]-12=24x3y2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3a + 4b - 5c - 2a - 3b + 5c
= ( 3a - 2a ) + ( 4b - 3b ) - ( 5c - 5c )
= a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= ( 7a - 3a - 4a ) + ( 3b + 2b + b ) - ( 4c + 2c + 2c )
= 6b - 8c
a) 3a + 4b - 5c - 2a - 3b + 5c
= (3a - 2a) + (4b - 3b) - (5c - 5c)
= a + b - 0 = a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= (7a - 3a - 4a) + (3b + 2b + b) - ( 4c + 2c + 2c)
= 0 + 6b - 8c = 6b - 8c
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
không tồn tại vì : ( 3a+2b)(7a+3b)-4=26032016+4:15ab=26032020=1735,3638=>>> không tồn tại
Cho mình hỏi "y" ở vế thứ 2 là gì vậy bạn nhỉ?
la cs