cho tam giác ABC có số đo các góc A;B;C tỉ lệ nghịch với 2;3;6. Tính số đo các góc của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}=180^o\div\left(3+2+1\right)\times3=90^o\)
\(\widehat{B}=180^o\div\left(3+2+1\right)\times2=60^o\)
\(\widehat{C}=180^o\div\left(3+2+1\right)\times1=30^o\)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
vì số đo góc A;B;C lần lượt tỉ lệ nghịch với 3;4;6 nên :
3A = 4B = 6C
=> 3A/12 = 4B/12 = 6C/12
=> A/4 = B/3 = C/2
=> A+B+C/2+3+4 = A/4 = B/3 = C/2
A+B+C = 180
=> 180/9 = A/4 = B/3 = C/2
=> 20 = A/4 = B/3 = C/2
=> A = 80; B = 60; C = 40
gọi số đo ^A,^B,^C lần lượt là x,y,z.(x,y,z thuộc Z)
theo đề bài, ta có:
3x=8y=6z=x+y+z=180
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x.3=y.8=z.6=x+y+z=3+8+6=180/58=288
=>x:13=288=>x=96
=>y:18=288=>y=36
=>z:16=288=>z=48
Cái còn lại thì bạn hãy nhập đường link này nhé
HELP ME PLS! Cho tam giác ABC có 5C = A+B. Tính số đo các góc A, B ,C biết A:B= 2:3 câu hỏi 219280 - hoidap247.com
Tổng số đo các góc của hình tam giác luôn bằng 360 độ
Số đo của góc A là:360:(3+5+7)x3=72 độ
Số đo của góc B là:72:3x5=120 độ
Số đo của góc C là:360-120-72=168 độ
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
Tam giác có ba góc bằng nhau thì đó là tam giác đều. Mà tổng ba góc trong một tam giác bằng 180 độ
Do đó: góc A=góc B=góc C= 180 độ : 3= 60 độ
Số đo mỗi góc trong tam giác ABC bằng 60 độ bạn nhé
Xét tam giác ABC có góc A = góc B = góc C
=> tam giác ABC là tam giác đều
=> Góc A = góc B = góc C = 60 độ
Có sai số ko cậu
Gọi số đo của ba góc \(\hat{A},\hat{B},\hat{C}\) lần lượt là \(a,b,c\) (độ) (\(a,b,c>0\) )
Ta có:
+) \(a,b,c\) là số đo các góc trong tam giác ABC
\(\rArr a+b+c=180\)
+) Số đo các góc \(\hat{A},\hat{B},\hat{C}\) tỉ lệ nghịch với 2;3;6
\(\rArr2a=3b=6c\)
\(\rArr\frac{2a}{6}=\frac{3b}{6}=\frac{6c}{6}\)
\(\rArr\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(a+b+c=180\) ta được:
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)
Suy ra:
\(\begin{cases}a=30.3=90\\ b=30.2=60\\ c=30.1=30\end{cases}\)
Vậy số đo của ba góc \(\hat{A},\hat{B},\hat{C}\) lần lượt là \(90^{o};60^{o};30^{o}\)