tìm số tự nhiên n để n+3 là bội của 3n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
a) vì 2.3+3 chia hết cho 3 nên n = 3
b) vì 4.2+1=9 là bội của 2.2-1=3 nên n=2
C) vì 4-2=2 là ước của 8.4=32 nên n=4
Đặt \(X=\sqrt[3]{4798655-27n}\) với \(20349< n< 47238\)
\(\Rightarrow X^3=A\)thoả mãn \(3514229< 4789655-27n< 4240232\) hay \(351429< X^3< 4240232\)
Tức là: \(152,034921< X< 161,8563987\)
Do X là số tự nhiên nên X chỉ có thể bằng 1 trong các số sau: 153; 154; 155; .... ; 160; 161
Vì: \(X=\sqrt[3]{478965-27n}\) nên \(n=\frac{478965-X^3}{27}\)
Ghi công thức tính trên n
Máy: \(X=X+1:=\frac{478965-X^3}{27}\)
Cho đến khi nhận được các giá trị.
Nguyên dương tương ứng được: \(X=158\Rightarrow A=393944312\)
Với x bắt đầu là 153
P/s: Bn cũng có thể giải bài này bằng máy tính Casio fx-570MS
Gọi tập hợp cần tìm là A
Vì A là tập hợp các số tự nhiên vừa là bội của 4,vừa là ước của 60.
Suy ra A giao của B(4) và Ư(60)
\(B\left(4\right)=\left\{0,4,8,10,12,16,20,24,28,32,36,40,44,48,52,56,60,...\right\}\)
\(Ư\left(60\right)=\left\{1,2,3,4,5,6,10,12,15,20,30,60\right\}\)
\(\Rightarrow A=\left\{4,10,60\right\}\)
(n+3)(n+1) là số nguyên tố
<=> n+3=1 hoặc n+1=1
n+3=1=>n=-2(vô lí)
n+1=1=>n=0
Vậy (n+3)(n+1) là số nguyên tố khi và chỉ khi n=0
Mọi người tick ủng hộ nhé!!!!!!!!!!!!!!!!
(n + 3)(n + 1) là số nguyên tố
< = > n + 3 = 1 hoặc n + 1 = 1
n + 3 = 1 => n= -2 (vô lí)
n + 1 = 1 => n = 0
Vậy (n + 3)(n+ 1) là số nguyên tố kh và chỉ khi n = 0
Để \(n+3\) là bội của \(3n+1\)
\(\Rightarrow\left(n+3\right)\) ⋮ \(3n+1\)
\(3.\left(n+3\right)\) ⋮ \(3n+1\)
\(\left(3n+9\right)\) ⋮ \(\left(3n+1\right)\)
\(\left(3n+1\right)+8\) ⋮ \(\left(3n+1\right)\)
Vì \(\left(3n+1\right)\) ⋮ \(\left(3n+1\right)\)
nên \(8\) ⋮ \(\left(3n+1\right)\)
\(\Rightarrow\left(3n+1\right)\in\) Ư(8)
\(\left(3n+1\right)\in\left\lbrace1;2;4;8\right\rbrace\)
\(3n\in\left\lbrace0;1;3;7\right\rbrace\)
\(n\in\left\lbrace0;loại;1;loại\right\rbrace\)
\(n\in\left\lbrace0;1\right\rbrace\)