Rút gọn phân số sau :
\(\frac{9^{14}\times25^5\times8^7}{18^{12}\times625^3\times24^3}\)
làm giúp mình nha,mình đang cần gấp để mai nộp bài cho cô giáo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{2^{12}\cdot3^{24}\cdot5^{12}\cdot2^9\cdot3^3}=\frac{3\cdot3^{27}\cdot5^{10}\cdot2^{21}}{2^{21}\cdot3^{27}\cdot5^2\cdot5^{10}}=\frac{3}{5^2}=\frac{3}{25}\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\)\(\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.2^9.3^3}\)
\(=\)\(\frac{3.3^{27}.5^{10}.2^{21}}{2^{21}.3^{27}.5^2.5^{10}}\)
\(=\)\(\frac{3}{5^2}\)
\(=\)\(\frac{3}{25}\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(3.2^3\right)^3}=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{27}.5^{12}}=\frac{3}{5^2}=\frac{3}{25}\)
a) \(2\left(2x-7\right)^2=18\)
\(\Leftrightarrow\left(2x-7\right)^2=9\)
\(\Leftrightarrow\left(2x-7\right)^2=3^2\)
\(\Leftrightarrow2x-7=3\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
2.(2X-7)^2= 18
(2X-7)^2=18:2
(2x-7)^2= 9
(2x-7)^2 = 3^2 = (-3)^2
=> (2x-7)^2 = 3^2 và (2x-7)^2 = (-3)^2
đổi ra thành thừa số nguyên tố rồi (ví dụ 9^2=(3^2)^2=3^4) rồi rút gọn là ra!!!
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{9^{14}\cdot25^5\cdot8^7}{9^{12}\cdot2^{12}\cdot25^6\cdot8^3\cdot3^3}=\frac{9^2\cdot8^4}{2^{12}\cdot25\cdot3^3}=\frac{3}{25}\)
\(\frac{9^{14}.25^5.8^2.8^7}{18^{12}.625^3.24^3}=\frac{3^{28}.5^{10}.8^9}{2^{12}.9^{12}.5^{12}.3^3.2^9}\)\(=\frac{3^{28}.5^{10}.2^{27}}{2^{21}.5^{12}.3^{24}.3^3}=\frac{3^{28}.5^{10}.2^{27}}{2^{21}.5^{12}.3^{27}}\) \(=\frac{3.2^6}{5^2}=\frac{192}{25}=7,68\)
\(\dfrac{9^{14}\cdot25^5\cdot8^7}{18^2\cdot625^3\cdot24^3}\)
\(=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^2\cdot3^4\cdot5^{12}\cdot2^9\cdot3^3}=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^{11}\cdot3^7\cdot5^{12}}\)
\(=\dfrac{3^{35}}{5^2}\cdot2^{10}\)
\(\frac{374}{506}=\frac{2.187}{253.2}=\frac{187}{253}\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.9^{12}.5^{12}.3^3.8^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{27}.5^{12}}\)
\(=\frac{3}{5^2}\)
\(a,-\frac{9}{12}=-\frac{9:3}{12:3}=-\frac{3}{4}\)
\(\frac{-18}{-24}=\frac{\left(-18\right):\left(-6\right)}{\left(-24\right):\left(-6\right)}=\frac{3}{4}\)
\(-\frac{35}{70}=-\frac{35:35}{70:35}=\frac{1}{2}\)
\(-\frac{9}{27}=-\frac{9:9}{27:9}=-\frac{1}{3}\)
\(b,\frac{1313}{4242}=\frac{1313:101}{4242:101}=\frac{13}{42}\)
\(\frac{-353535}{-424242}=\frac{\left(-353535\right):\left(-70707\right)}{\left(-424242\right):\left(-70707\right)}=\frac{5}{6}\)
\(c,\frac{2^3\times4^3\times5^4}{8^2\times25^3\times7}=\frac{2^3\times4^3\times25^2}{8\times8^2\times25^2\times25\times7}\) ( 4^3 = 8^2 ; 5^4 = 25^2 )
\(=\frac{1}{25\times7}=\frac{1}{175}\)
\(a.\frac{-9}{-12}=\frac{-9:3}{-12:3}=\frac{-3}{-4}.\)
\(\frac{-18}{-24}=\frac{-18:6}{-24:6}=\frac{-3}{-4}\)
\(\frac{-35}{-70}=\frac{-35:35}{-70:35}=\frac{-1}{-2}\)
\(\frac{-9}{-27}=\frac{-9:9}{-27:9}=\frac{-1}{-3}\)
A = \(\frac{9^{14}\times25^5\times8^7}{18^{12}\times625^2\times24^3}\)
A = \(\frac{\left(3^2\right)^{14}\times\left(5^2\right)^5\times\left(2^3\right)7}{\left(2.3^2\right)^{12}\times\left(5^4\right)^3\times\left(2^3.3\right)^3}\)
A = \(\frac{3^{28}\times5^{10}\times2^{21}}{2^{12}\times3^{24}\times5^{12}\times2^9\times3^3}\)
A = \(\frac{3^{28}\times5^{10}\times2^{21}}{\left(3^{24}.3^3\right)\times5^{12}\times\left(2^{12}\times2^9\right)}\)
A = \(\frac{3^{28}\times5^{10}\times2^{21}}{3^{27}\times5^{12}\times2^{21}}\)
A = \(\frac{3}{5^2}\)
A = \(\frac{3}{25}\)
\(\dfrac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}\)
\(=\dfrac{3^{28}\cdot5^{10}\cdot2^{21}}{\left(2\cdot3^2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(2^3\cdot3\right)^3}\)
\(=\dfrac{2^{21}\cdot3^{28}\cdot5^{10}}{2^{12}\cdot3^{24}\cdot5^{12}\cdot2^9\cdot3^3}\)
\(=\dfrac{2^{21}}{2^{21}}\cdot\dfrac{3^{28}}{3^{27}}\cdot\dfrac{5^{10}}{5^{12}}=\dfrac{3}{5^2}=\dfrac{3}{25}\)