so sánh p = 1-1/2 +1/3-1/4+1/5-...-1/2024 và q= 1/1013+1/1014 +...+ 1/ 2024 giúp tớ với 😎😎😎 , 3 người làm sớm nhất mình tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)
Ta có :
\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)
\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)
\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)
\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)
\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)
S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(A=\dfrac{10^{2024}+1}{10^{2023}+1}=\dfrac{10\left(10^{2023}+1\right)}{10^{2023}+1}-\dfrac{9}{10^{2023}+1}=1-\dfrac{9}{10^{2023}+1}\)
\(B=\dfrac{10^{2023}+1}{10^{2022}+1}=\dfrac{10\left(10^{2022}+1\right)}{10^{2022}+1}-\dfrac{9}{10^{2022}+1}=1-\dfrac{9}{10^{2022}+1}\)
Vì \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)
\(\Rightarrow A>B\)
P= 1-1/2+1/3-1/4+1/5-...-1/2024
P= (1+1/2+1/3+1/4+...+1/2024) - 2(1/2+1/4+1/6+...+1/2024)
P= (1+1/2+1/3+1/4+...+1/2024) - (1+1/2+1/3+...+1/1012)
P= 1/1013+1/1014+...+1/2024
Vậy P=Q
Chúc bạn học tốt nhé!
P= 1-1/2+1/3-1/4+1/5-...-1/2024 P= (1+1/2+1/3+1/4+...+1/2024) - 2(1/2+1/4+1/6+...+1/2024) P= (1+1/2+1/3+1/4+...+1/2024) - (1+1/2+1/3+...+1/1012) P= 1/1013+1/1014+...+1/2024 Vậy P=Q Chúc bạn học tốt nhé!