cho p=1/2+1/2^2+...+1/2^2002 CMR P ∉ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
Đặt
P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002
Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11)
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6}
P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2)
Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p)
=> a^10 ≡ 1 (mod 11)
=> a^2000 ≡ 1 (mod 11)
=> a^2002 ≡ a^2 (mod 11) (*)
Từ (*) => P - Q ≡ 0 (mod 11)
mà Q ≡ 0 (mod 11) theo cm trên
=> P ≡ 0 (mod 11)
Xét A = 1/5 + 1/13 + ... + 1/(n²+(n+1)²)
phần tử tổng quát của chuổi trên có dạng:
uk = 1 /[k²+(k+1)²] với k chạy từ 1 --> n
có: k² + (k+1)² ≥ 2k(k+1) (dùng hằng đẳng thức là ra)
<=> 1/[k² + (k+1)² ≤ 1 /2k(k+1)
* Xét: B = 1/1.2 + 1/2.3 + ... + 1/n(n+1)
thấy: 1/k(k+1) = 1/k - 1/(k+1), thay k từ 1 --> n ta có:
1/1.2 = 1/1 - 1/2
1/2.3 = 1/2 - 1/3
1/3.4 = 1/3 - 1/4
....
1/n(n+1) = 1/n - 1/(n+1)
cộng theo vế, (chú ý đơn giản) ta có:
B = 1 - 1/(n+1) < 1
\(A=\left(\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{2002-1}{2002!}\right)+\frac{1}{2002!}\)
\(A=\left(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2002}{2002!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)
\(A=\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2001!}-\frac{1}{2002!}\right)+\frac{1}{2002!}\)
\(A=\frac{1}{1!}-\frac{1}{2002!}+\frac{1}{2002!}=1\)
Xét với n là số tự nhiên không nhỏ hơn 1
Ta có : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng điều trên ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
\(=1-\frac{1}{\sqrt{2002}}< 1-\frac{1}{\sqrt{2025}}=1-\frac{1}{45}=\frac{44}{45}\)
ta chứng minh công thức tổng quát sau
\(\frac{1}{\left[n+1\right]\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left[n+1\right]}\left[\sqrt{n+1}+\sqrt{n}\right]}\)
=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}\left[n+1-n\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left[n+1\right]}}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
ta có \(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
........
\(\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}=\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
=> \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+..+\frac{1}{2002\sqrt{2001}+2001\sqrt{2002}}\)
=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2001}}-\frac{1}{\sqrt{2002}}\)
=\(1-\frac{1}{\sqrt{2002}}< \frac{44}{45}\)
Ta có:
\(A=x^{2002}-x+x^{2000}-x^2+x^2+x+1=x^{2001}-1.x+x^2.x^{1998}-1+x^2+x+1\)
Lại có:
\(x^{2001}-1\)và \(x^{1998}-1⋮x^3-1⋮x^2+x+1\RightarrowĐPCM\)
\(P=\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{2002}}\)
\(2P=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2001}}\)
\(2P-P=\left(1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2001}}\right)-\left(\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{2002}}\right)\)
\(P=1-\frac{1}{2^{2002}}\)
Mà \(0
Vậy \(P\notin N\)
Sửa: Mà \(0<1-\frac{1}{2^{2002}}<1\)