Cho M = 1+2+2^2+2^3+...+2^2024
Tìm số dư khi chia M cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) có \(100\) số hạng
và \(100⋮2;4;5\) và \(100⋮̸3\)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)
vậy \(A\) chia hết cho \(3\) (1)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)
vậy \(A\) chia hết cho \(15\) (2)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)
vậy \(A\) chia hết cho \(31\) (3)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)
ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)
vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)
nên số 2 là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)
ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)
\(\Rightarrow A\) chia hết cho \(3\) (1)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)
\(\Rightarrow A\) chia hết cho \(15\) (2)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))
\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)
\(\Rightarrow A\) chia hết cho \(31\) (3)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(A=6+2^3.7+...+2^{98}.7\)
\(A=6+7\left(2^3+...+2^{98}\right)\)
ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)
\(\Rightarrow A\) không chia hết cho \(7\) và \(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\) là \(6\) (đpcm)
Câu a:
TH1 : $n = 3k$
thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$
TH2 : $n = 3k+1$
thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$
TH3 : $n = 3k+2$
thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$
Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$
-Nguyễn Thành Trương-
Câu 1b)
+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N
Ta có : \(S=1+2+2^2+2^3+...+2^{2018}\)
= \(\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...\left(2^{2016}+2^{2017}+2^{2018}\right)\)
= \(\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...2^{2016}\left(1+2+2^2\right)\)
= \(\left(1+2+2^2\right)\left(1+2^3+2^6+...2^{2016}\right)\)
= \(7\left(1+2^3+2^6+...+2^{2016}\right)\)\(⋮7\)
Vậy S:7 dư 0
A = 2 + 22+ 23+........+ 2100 2A = 2. ( 2 + 22+23+..........+ 2100 ) 2A = 2.2+ 2.22+2.23+.........+ 2.2100 2A = 22+23+24+........+2101
a : 7 dư 2 \(\Rightarrow\) a = 7k + 2
b : 7 dư 3 \(\Rightarrow\) b = 7h + 3
\(\Rightarrow\) a + b = (7k + 2) + (7h + 3) = (7k + 7h) + (2 + 3) = 7(k + h) + 5
Vậy, a + b : 7 dư 5
a:7 dư 2 => a=7k+2
b:7 dư 3 =>b=7h+3
a+b=7k+2+7h+3=7(k+h)+5
=> a+b chia 7 dư 5
Ta có: \(M=1+2+2^2+...+2^{2024}\)
\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2022}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{2022}\right)⋮7\)